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ABSTRACT

Wildfires threaten ecosystems, economies, and public health, particularly in

high-risk regions. Accurate wildfire prediction remains challenging due to complex

interactions among weather patterns, vegetation dynamics, climate change, and

human activities. This study investigates the role of advanced metaheuristic algo-

rithms in optimizing feature selection for wildfire prediction across eight Canadian

provinces, focusing on improving accuracy and computational efficiency. We eval-

uate twelve algorithms, including Atom Search Optimization (ASO), Barnacles

Mating Optimizer (BMO), Chef-Based Optimization (CBO), Energy Valley Opti-

mizer (EVO), Equilibrium Optimizer (EO), and Walrus Optimization Algorithm

(WOA), among others.

Key results highlight the superior performance of BMO and EVO, with BMO

achieving average recall rates of 77.55% in Alberta and 76.51% in Quebec, and

EVO attaining 76.96% and 78.30% in these provinces, respectively. In contrast,

ASO consistently underperformed, yielding recall rates as low as 44.67% in Ontario

and 51.99% in the Northwest Territories. Statistical analyses using Friedman

and Wilcoxon signed-rank tests confirmed significant differences in algorithmic

performance (p < 0.05), with spiral-enhanced variants of the Liver Cancer Algorithm

(LCA) outperforming the baseline LCA. Furthermore, Random Forest and Gradient

Boosting emerged as the most reliable prediction models, emphasizing the synergy

between optimized feature selection and robust machine learning frameworks.

A significant contribution of this research is the enhancement of the LCA

through spiral updates, specifically the Euler Spiral, which improves the balance

between exploration and exploitation in the search space. This enhancement

addresses the instability and slow convergence often associated with the standard

LCA. Although the spiral updates improved LCA’s performance, algorithms like
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EVO and the Genetic Algorithm (GA) consistently outperformed LCA in recall

and overall predictive accuracy across provinces.

The findings of this study highlight the variability in algorithm performance

and emphasize the importance of tailoring wildfire prediction strategies to specific

regional conditions. This work not only evaluates the capabilities of advanced

metaheuristic algorithms but also identifies key environmental factors that predict

wildfire risk, offering practical insights to enhance wildfire risk management and

mitigation efforts.

Key Words: Wildfire; Machine Learning; Feature Selection; Model Optimization;

Liver Cancer Algorithm
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Chapter 1

Introduction

1.1 Background and Significance

Wildfires are critical and recurring natural disasters and have a profound and

lasting influence on various aspects of life and the global environment. A wildfire is

an uncontrolled fire spreading through vegetative fuels, exposing and consuming the

natural and built environment in its path (Pyne et al. [1996]). While fire is a natural

component of many ecosystems, facilitating plant regeneration and nutrient cycling

(Sant́ın and Doerr [2016]), its frequent and intense occurrence—often worsened by

human activities and climate change has far-reaching consequences (Prapas et al.

[2021]). Recent data highlights this escalating challenge: 2021 was notably one of

the harshest years in recent forest fire history, with a staggering 9.3 million hectares

of tree cover lost globally, a figure representing over a third of all tree cover loss that

year (Tyukavina et al. [2022], Potapov et al. [2017]). In 2022, Canada saw a decline

in wildfire activity, yet the situation remained concerning, with over 6.6 million

hectares lost to fires. By 2023, the severity of wildfires intensified dramatically, as
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nearly 15 million hectares—an area proximate to the size of Portugal were consumed

(Weisse et al. [2022], Canada [2024]). This trend continued into 2024, with over 5.3

million hectares burned by September(CIFFCI [2024]). This activity significantly

contributed to the year’s global wildfire-induced carbon emissions, estimated at

around 2170 megatonnes, with emissions from Canadian wildfires alone constituting

a substantial portion of this total (Weisse et al. [2022]). As wildfires emit carbon

dioxide, particulate matter, and various hazardous gases like carbon monoxide

(CO), nitrogen oxides (NOx), and non-methane organic compounds (NMOC), they

heighten the greenhouse effect, contributing to a warming planet (Naeher et al.

[2007]). This release of carbon, especially in such large amounts, creates the feed-

back loop between wildfires and climate change. Increasing temperatures and drier

conditions fuel the likelihood and intensity of future fires, thus creating a cycle of

destruction and environmental degradation. These emissions also pose immediate

health risks, causing respiratory diseases, aggravating pre-existing cardiovascular

conditions, and have long-term implications ([Reid et al., 2016, Fadadu et al., 2021,

Noah et al., 2023, Mangual et al., 2024]). Wildfires also impact the interconnected-

ness of air quality, ecosystem health, and biodiversity. These events fundamentally

change habitats and ecosystems, affecting species composition, abundance, and

resilience, thus playing a pivotal role in shaping biodiversity in both immediate and

long-term contexts (Reisen et al. [2015], Jaffe et al. [2020], Burkle et al. [2015], Heil

and Burkle [2018], Gates et al. [2021]). Due to these effects, it is crucial to delve

into the roots of these destructive events. The leading causes of wildfires range from

natural phenomena, such as lightning strikes, to human activities, including land

clearing, campfires, and the improper disposal of cigarettes and faulty electric poles

(Halofsky et al. [2020]). For instance, between 2013 and 2020, Turkey witnessed

950 wildfires caused by lightning strikes (Sari [2023]). Similarly, from 1990 to 2016,

lightning was responsible for approximately 47 percent of all wildfire incidents in
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Canada, highlighting its significant role in ignition (Tymstra et al. [2020]). These

stress the crucial impact of natural causes, particularly lightning, on wildfire gene-

sis. They reveal the complexity and diversity of ignition sources across different

landscapes and highlight regional vulnerabilities influenced by topography and

forest cover characteristics. Climate change emerges as a critical factor, amplifying

conditions suitable for wildfires and influencing the ignitable materials available.

Alterations in climate directly impact fuel availability and moisture content; for

instance, during drought periods, potential fuels’ increased abundance and dryness

significantly elevate fire risk and intensity (Halofsky et al. [2020]). Understanding

the variables that escalate wildfire severity is essential. Environmental factors such

as drought conditions, elevated temperatures, strong winds, and low atmospheric

humidity are critical in determining the likelihood and intensity of wildfire events.

For example, numerous studies have identified temperature as a critical factor

influencing annual wildland fire activity, with warmer conditions correlating with

increased fire occurrences and severity (Coogan et al. [2021], Flannigan et al. [2005],

Hély et al. [2001]). This relationship underlines the significance of temperature as

a variable in fire dynamics, where higher temperatures can lead to drier conditions,

enhancing fuel flammability and the potential for more extensive and intense wild-

fires (Wasserman and Mueller [2023], Alizadeh et al. [2021]). Wildfire behavior is

influenced by a complex interplay of numerous environmental, meteorological, and

vegetation-related factors. This complexity presents challenges in identifying the

most critical features and accurately predicting wildfire occurrences. Given the

escalating frequency of wildfires and their devastating effects, developing reliable

prediction models has become increasingly important. These models are vital

for mitigating risks, reducing damage, improving emergency response plans, and

optimizing the allocation of firefighting resources. Machine-learning approaches

have emerged as powerful tools for constructing predictive models for wildfires

3



in this era of data abundance. However, the complicated relationships among

features in wildfire datasets often necessitate advanced techniques to handle their

complexity. Metaheuristic algorithms address this, as they excel in exploring large

search spaces and efficiently identifying optimal feature sets. These algorithms

enable the development of more accurate models by selecting the most relevant

features, thereby enhancing the predictive capabilities of machine-learning methods

in wildfire studies. In this research, we evaluate a range of metaheuristic algorithms,

including Atom Search Optimization (ASO), Barnacles Mating Optimizer (BMO),

Chef Base Optimization (CBO), Energy Valley Optimizer (EVO), Equilibrium

Optimizer (EO), Exponential Distribution Optimizer (EDO), Genetic Algorithm

(GA), Golden Ratio Method (GRM), Liver Cancer Algorithm (LCA), Manta Ray

Foraging Optimization (MRFO), Particle Swarm Optimization (PSO), Slime Mould

Algorithm (SMA), and Walrus Optimization Algorithm (WOA). Building on the

foundational understanding of the importance of predictive modelling in wildfire

management and the innovative use of metaheuristic algorithms, this research sets

out specific objectives to advance wildfire prediction. Our goals aim to improve

the field of wildfire prediction and offer insights that can enhance risk management

strategies. The primary aim is to leverage the strengths of selected metaheuristic

algorithms to boost the accuracy, efficiency, and real-world applicability of wildfire

prediction models. By doing so, we aim to contribute to more effective wildfire

prevention and control efforts.

Research Objectives:

1. To apply and evaluate a diverse range of advanced metaheuristic algorithms,

including Atom Search Optimization (ASO), Barnacles Mating Optimizer

(BMO), Chef Base Optimization (CBO), Energy Valley Optimizer (EVO),

Equilibrium Optimizer (EO), Exponential Distribution Optimizer (EDO),
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Genetic Algorithm (GA), Golden Ratio Method (GRM), Liver Cancer Algo-

rithm (LCA), Manta Ray Foraging Optimization (MRFO), Particle Swarm

Optimization (PSO), Slime Mould Algorithm (SMA), and Walrus Optimiza-

tion Algorithm (WOA), for feature selection in wildfire prediction models.

This objective aims to determine which algorithms most effectively improve

model performance in predicting wildfire occurrences.

2. To develop and refine the Spiral Liver Cancer Algorithm to enhance the

standard LCA. It addresses limitations such as inefficient convergence and

instability caused by giant Levy flight steps. By introducing Spiral updates,

this objective seeks to enhance search precision and improve feature selection,

outperforming other metaheuristic algorithms in wildfire prediction tasks.

3. To identify the most influential variables in wildfire prediction through the

optimized feature selection processes provided by the metaheuristic algorithms.

A clearer understanding of these critical variables will improve model accuracy

and efficiency in predicting wildfire events.

4. To perform a comprehensive comparative analysis of the selected algorithms

regarding prediction accuracy, computational efficiency, and scalability. This

objective aims to pinpoint the most effective approaches for real-world appli-

cations in wildfire prediction, contributing to more informed risk management

strategies.

Ultimate Goal: The primary goal of this research is to advance wildfire prediction

by establishing effective feature selection techniques through a detailed evaluation

of metaheuristic algorithms. By accomplishing this, the study aims to:

• Set a benchmark for the most efficient metaheuristic algorithms in wildfire

prediction, enhancing the accuracy and robustness of predictive models.
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• Improve the Spiral Liver Cancer Algorithm (LCA) to address the limitations of

traditional approaches, ultimately outperforming other algorithms in precision

and convergence.

• Identify the key variables most significantly influencing wildfire prediction,

enabling more efficient and streamlined model development.

• Provide practical guidelines for selecting the most appropriate algorithms for

real-world applications, supporting better risk management strategies and

informed decision-making in wildfire prevention and control.

By focusing on these objectives, this research seeks to make a meaningful

contribution to the growing wildfire prediction and management field. Through the

insights gained, the study aims to enhance predictive accuracy and provide valuable

information that supports strategic decision-making in wildfire mitigation efforts.

The following chapters are designed to explore the research in a structured and

detailed manner. Chapter 2 provides a thorough literature review, situating this

study within the broader context of wildfire prediction research and identifying the

existing gaps this work aims to address. Chapter 3 outlines the research design and

methodology, particularly concerning the selection and application of metaheuristic

algorithms for feature selection and developing and refining the Spiral Liver Cancer

Algorithm (LCA). Chapter 4 presents the experimental results and offers a detailed

analysis of the findings, discussing their practical applications and theoretical

implications in the context of wildfire prediction. Finally, Chapter 5 concludes the

thesis by reflecting on the research outcomes, their contributions to the field, and

the opportunities for future research. This final chapter highlights how this study

paves the way for further advancements in wildfire prediction strategies and risk

management.
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Chapter 2

Literature Review

Amid the escalating challenges posed by climate change, wildfires have become

increasingly frequent and destructive, highlighting the critical need to enhance

predictive capabilities. This literature review explores the evolving field of wild-

fire prediction and management, focusing on integrating advanced metaheuristic

algorithms and machine learning to improve prediction accuracy and efficiency. As

we delve deeper into the complexities of wildfire prediction, it becomes essential

to fully leverage the power of machine learning—an area of artificial intelligence

that enables systems to learn from data and make informed predictions. By com-

bining machine learning models with metaheuristic algorithms, including Atom

Search Optimization (ASO), Barnacles Mating Optimizer (BMO), Chef Base Opti-

mization (CBO), Energy Valley Optimizer (EVO), Equilibrium Optimizer (EO),

Exponential Distribution Optimizer (EDO), Genetic Algorithm (GA), Golden Ratio

Method (GRM), Liver Cancer Algorithm (LCA), Manta Ray Foraging Optimization

(MRFO), Particle Swarm Optimization (PSO), Slime Mould Algorithm (SMA),

and Walrus Optimization Algorithm (WOA), represents a promising approach to
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refining and improving the accuracy of wildfire prediction models.

The review is organized into three key sections. First, the ”Research History of

Wildfire Science” traces the evolution of wildfire research, providing the necessary

context to appreciate the novel contributions of contemporary algorithms. Next,

the ”Application of Machine Learning in Wildfire Prediction” delves into how these

advanced algorithms are applied to analyze large datasets, enabling the identification

of patterns and predictors with greater precision. Finally, the ”Optimizing Wildfire

Prediction Models through Advanced Feature Selection” section highlights the

importance of selecting relevant features for improving predictive accuracy and

operational efficiency. This part critically examines the role of metaheuristic

algorithms in refining feature selection, comparing their effectiveness and discussing

their practical implications for wildfire management.

2.1 Research History of Wildfire Science In

Canada

Before structured scientific studies on wildland fires began, Indigenous communities

in Canada had developed advanced fire management practices, Such as controlled

burns to manage ecosystems and protect communities, reflect a deep understand-

ing of wildfire dynamics, nurtured over millennia of living in harmony with their

environment (Hoffman et al. [2022], Huffman [2013], Christianson [2015]). This

knowledge contrasts sharply with the fire suppression strategies introduced by

European settlers. When European settlers arrived, their view of forest resources

was mainly economic, with little attention to sustainable management or fire pre-

vention. Early milestones in organized wildfire management include creating the
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Timber, Mines, and Grazing Branch in 1882 and introducing forest rangers in 1883

(Johnstone [1991]). Quebec’s 1883 initiative for forest rangers and Ontario’s 1895

Forest Reserves Act further highlighted the growing need for structured wildfire

prevention and management strategies (Rajala [2005]). In the 1920s, the formal

study of wildfire science began to take shape, aided by the political climate under

Mackenzie King’s Liberal government. A national forest protection conference in

1924 marked a turning point, signalling the government’s interest in fire control

and hinting at a national forestry policy. However, progress toward a compre-

hensive policy stalled due to political concerns about federal-provincial relations.

This resulted in the provinces taking control of natural resource management,

leaving federal efforts, such as the Dominion Forest Service under Director E.H.

Finlayson, in a precarious position. The Great Depression further strained re-

sources, impacting both forestry research and management. Despite these setbacks,

significant progress was made in wildfire science during this period, particularly

at the Petawawa experiment station. Researchers James G. Wright and Herbert

W. Beall studied how weather conditions impacted forest flammability, creating

foundational knowledge to fuel further nationwide research efforts (Stocks2 et al.

[1989], Paul [1969]). These studies led to the creation of the Canadian Forest Fire

Weather Index (FWI) System in 1970 and the Forest Fire Behavior Prediction

(FBP) System in the 1980s (Paul [1969], McAlPINE et al. [1990], Wagner [1987]).

Building on years of empirical research and technological advancements, these

systems revolutionized wildfire prediction and management in Canada, leading to

more precise and effective fire management strategies (Groot [1987], Stocks2 et al.

[1989]). Another major development in wildfire prediction came in 1972 with the

creation of Rothermel’s Fire Spread Model. Although not developed in Canada,

Rothermel’s model globally impacted wildfire behaviour modelling, including in

Canada (Andrews [2018]). This model introduced standardized fuel types and
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accounted for wind and slope conditions, allowing for more accurate fire behaviour

predictions. The Canadian FBP System integrated principles from Rothermel’s

work, adapting them to Canadian wildfires, and it remains a central tool in the

country’s fire management strategy. The development of wildfire prediction models

in Canada did not stop there. In 1999, the Prometheus project aimed to create

a more advanced simulation model for fire growth, building on the strengths of

the FBP System. The goal was to integrate wave propagation theories, which

allowed the model to simulate fire spread in more complex environments (Tymstra

et al. [2010], Barber et al. [2009]). Prometheus marked a significant leap in wildfire

modelling, combining detailed fire behaviour predictions with sophisticated mathe-

matics, making it one of Canada’s most important contributions to wildfire science.

Despite the complexity of models like the FBP System and Prometheus, wildfires

remain challenging to predict accurately, especially given Canada’s evolving climate

and various vegetation types. These models, while robust, face limitations in

addressing the unpredictable variables introduced by climate change. A significant

advancement in wildfire science has been the growing understanding of how weather

affects wildfire behaviour. Studies have shown that temperature, lightning, wind,

and humidity are critical in determining wildfire spread and intensity (Flannigan

et al. [2005], Flannigan and Harrington [1988], Wotton [2009]). In particular,

rising temperatures have been strongly linked to increased wildfire-affected areas

(Flannigan et al. [2005], Jolly et al. [2015], BALSHI et al. [2009]). Additionally,

higher temperatures contribute to frequent lightning strikes, a common cause of

wildfires. Research suggests that a one-degree Celsius rise in temperature could

result in a 5-100% increase in lightning activity, raising the risk of wildfires (Romps

et al. [2014]). As our understanding of how weather influences wildfires deepens,

the need for more dynamic fire models becomes clear. Traditional models, while

effective, often struggle to integrate real-time weather data or adapt to rapidly

10



changing meteorological conditions. The field is shifting towards Next Generation

Fire Modeling in response to these challenges. These advanced models aim to build

upon frameworks like the FBP System by incorporating more complex variables,

including refined climate change projections. Such innovations are designed to

improve the accuracy of predictions and provide better tools for managing wildfires

in an era of increasing unpredictability. The history of wildfire science in Canada

shows a continuous evolution. From the early development of the FBP System to

the incorporation of advanced meteorological data in Next-Generation Fire Model-

ing, each advancement has responded to emerging challenges in wildfire dynamics.

Next-generation fire Modeling represents a critical advancement, integrating vast

amounts of data and employing sophisticated algorithms to better predict and

manage wildfires in a world where the risks continue to grow.

2.1.1 Related Work In Machine Learning and Wildfire

Science

As the field of wildfire science progresses, it is crucial to note the emerging role of

machine learning (ML) and artificial intelligence (AI) in reshaping our approach

to understanding and managing wildfires. Integrating operations research, ML,

AI, and other digital technologies marks a new era in wildfire science, offering

unprecedented capabilities to analyze, predict, and respond to wildfire events.

Machine learning, a subset of artificial intelligence, is defined as a set of methods that

automatically detect patterns in data, facilitating the discovery of significant insights

and enabling predictive models to anticipate future data trends or behaviours

(Murphy [2012]). Machine learning’s role within AI is akin to the brain’s function

within the human body, serving as a critical component that drives the intelligence

and adaptability of AI systems. Three types of machine learning are pivotal
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in analyzing and interpreting complex data sets: supervised, unsupervised, and

reinforcement learning (Ivan et al. [2019]). Supervised learning involves training a

model using a dataset where the desired output signals (labels) are already known,

allowing the algorithm to learn by example (Kolosova and Berestizhevsky [2020],

Bateman et al. [2020]). This methodology is particularly effective in wildfire science

for predicting specific outcomes, such as fire spread or ignition likelihood, based on

historical data where the results are already understood. Conversely, unsupervised

learning does not rely on pre-labeled data. Instead, it attempts to identify patterns

or intrinsic structures within the data itself (Geoffrey and Terrence J. [1999]). This

approach can be instrumental in uncovering hidden patterns in wildfire occurrences

or distributions, providing insights that might not be immediately evident through

traditional analysis methods. Then, there is reinforcement learning, which stands

out for its decision-making prowess. By interacting with an environment, the

model learns to make a series of decisions, receiving feedback regarding rewards or

penalties (Richard S. and Andrew G. [1998]). This dynamic learning process is akin

to strategizing in complex and uncertain conditions, like developing adaptive fire

suppression strategies in wildfire management, where the model iteratively improves

its decision-making capability based on past outcomes. Having explored the core

methodologies of machine learning—supervised, unsupervised, and reinforcement

learning—we can now delve into how these techniques are applied to various facets

of wildfire science, each playing a pivotal role in enhancing our understanding and

management of wildfires. With their unique capabilities, these machine-learning

approaches offer invaluable tools across different dimensions of wildfire research,

from characterizing fire behaviour and assessing burn severity to improving fire

detection and predicting occurrences. By applying these methods to specific wildfire-

related challenges, researchers and practitioners can extract deeper insights, make

more informed decisions, and develop more effective strategies for wildfire mitigation

12



and management. Now, let us examine the nuanced applications of machine learning

within critical areas of wildfire science, starting with the characterization of fire

behaviour, moving through the estimation of burn areas and severity, advancing to

the precision of fire detection, and understanding the patterns of fire occurrence.

Fire Fuel Characteristics

Understanding fire fuels is critical to accurately predicting wildfire behaviour (Nolan

et al. [2016]). Fuel type, moisture content, density, and arrangement significantly

influence how fires ignite, spread, and intensify. Tools such as the Fire Weather

Index (FWI) have long provided crucial insights into fuel characteristics, supporting

wildfire research and management (Heacute;ly et al. [2001], Emilio [2003], Wagner

[1987]). These insights are vital for developing effective fire management strategies,

refining predictive models, and ultimately minimizing the impact of wildfires. Recent

advancements in remote sensing and machine learning have greatly improved our

ability to assess fire fuels on a large scale. For example, Zhu et al. (2021) used a

deep learning approach with a temporal convolutional neural network (TempCNN-

LFMC) to estimate Live Fuel Moisture Content (LFMC) across the United States,

achieving notable accuracy with an RMSE of 25.57 percent, which offers valuable

data for real-time fire danger assessments (Zhu et al. [2021]). Similarly, Rivera et al.

(2023) developed machine learning models to predict Critical Heat Flux for Ignition

(CHFI) based on solid fuel properties, using over 2,000 experimental datasets and

achieving high predictive accuracy (Rivera et al. [2023]). In the Mediterranean

region, Cunill et al. (2022) applied a Random Forest algorithm to map LFMC,

achieving solid results and demonstrating how these methods can improve fire

danger assessments (Cunill Camprub́ı et al. [2022]). Similarly, Costa-Saura et al.

(2021) used Sentinel-2 data combined with meteorological variables to model LFMC
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variability across Spain, showing that seasonal changes in LFMC are crucial for

predicting fire risk (Costa-Saura et al. [2021]). However, while moisture content

is essential, it is only one part of the equation. Other critical factors—fuel type,

density, and arrangement—also play a crucial role in determining wildfire behaviour.

These attributes, shaped by the local vegetation and landscape, influence how fires

ignite, spread, and increase in intensity. Fuel type significantly impacts wildfire

behavior due to the varying flammability of different vegetation. Coniferous forests,

for instance, are highly flammable because of their resinous composition, which

encourages rapid fire spread. Hayes et al. (2024) found that in burned boreal

forests, fuel constraints significantly limit fire behavior, making coniferous species

particularly vulnerable to repeated, intense fires due to their flammability and the

fuel they provide over time (Hayes et al. [2024]). Likewise, Abdollahi and Yebra

(2023) noted that shrublands are composed of refined, dry fuels that ignite easily,

especially under dry conditions, leading to faster and more intense fire spread

(Abdollahi and Yebra [2023]). The density of vegetation also plays a significant

role in fire intensity. Denser forests, such as those with high biomass density, tend

to support more severe fires. For example, Boyd et al. (2023) observed that dense

boreal forest ecosystems in Alaska, with large amounts of combustible material,

including canopy and ground fuels, result in higher fireline intensity and faster

surface fire spread (Boyd et al. [2023]). Albini (1976) also found that dense fuel

loads contribute to longer flame lengths and higher heat outputs, which in turn

increases fire severity (Station [1976]). On the other hand, Rothermel (1972) noted

that forests with lower fuel density, such as open woodlands, tend to experience

less intense fires due to reduced fuel loads, leading to quicker burn-out times and

lower flame heights (Station [1972]). This shows that fuel type and the amount

of available fuel are crucial in determining how wildfires behave. Finally, the

arrangement of fuels—both vertical and horizontal—within an ecosystem is critical
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in determining how fires move through the landscape. Forests with continuous

vertical structures, from ground vegetation to the canopy, create a pathway for

fires to transition from surface fires to more dangerous crown fires. Myroniuk et al.

(2023) found that vegetation’s vertical and horizontal continuity, particularly in the

Chornobyl Exclusion Zone, allows for faster fire spread. This highlights how the

spatial arrangement of fuels and their type and density can significantly influence

the intensity and unpredictability of wildfire spread (Myroniuk et al. [2023]).

Burn Areas and Fire Severity

Wildfire research has advanced significantly with new methods for analyzing and

understanding the severity of burned landscapes. In recent years, satellite imagery

and machine learning have emerged as essential tools for quantifying the impact

of wildfires and improving the accuracy of fire severity assessments. Satellites like

Landsat-8, Landsat-9, and Sentinel-2 have become central to wildfire monitoring.

These platforms capture high-resolution, multispectral data that allows researchers

to differentiate between burned and unburned areas and categorize fire severity

(McCorkel et al. [2018], Sigurdsson et al. [2022], Claverie et al. [2018], nas [2023a]).

This data is crucial for assessing large, remote regions affected by fires, providing a

comprehensive view of the aftermath. Machine learning has taken wildfire analysis

to new heights, making burn severity mapping more accurate and efficient. For

instance, Collins et al. (2018) found that a Random Forest classifier achieved

over 95 percent accuracy in identifying major burn areas and 74 percent for lower

severity burns using Landsat imagery. Similarly, Pu et al. (2004) used logistic

regression and neural network models, achieving a remarkable 97 percent accuracy

in identifying burned regions. These models underscore the potential of machine

learning to enhance fire severity mapping by reducing the limitations of traditional
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manual approaches. Combining different types of data has further refined these

assessments. In Indonesia, researchers integrated Sentinel-1 radar and Sentinel-2

optical imagery, improving classification accuracy for burned areas to 91.80 percent

and 95.80 percent, depending on the model used (Arjasakusuma et al. [2022]).

This shows the power of using diverse data sources to create a more detailed

understanding of wildfire impacts. Cloud-based platforms like Google Earth Engine

are also gaining traction in fire mapping. Nelson et al. (2024) highlighted how these

platforms could handle large-scale data processing, which is critical to tracking

burn severity across vast landscapes and improving real-time fire management

strategies (Nelson et al. [2024]). This capability is critical as we seek to automate

and streamline wildfire monitoring efforts. Further work by Khankeshizadeh et al.

(2024) combined Sentinel-1 radar with Sentinel-2 optical data, using deep learning

techniques to achieve high accuracy in mapping forest burns (Khankeshizadeh et al.

[2024]). The ability of machine learning to blend different types of data makes it

an invaluable tool in the evolving landscape of wildfire research. Other research

has shown that machine-learning techniques are adaptable to various ecosystems.

Mitrakis et al. (2012) used a self-organizing neuro-fuzzy classifier to achieve over

95 percent accuracy with LANDSAT-5 TM imagery, outperforming traditional

methods like neural networks and support vector machines. Tonbul et al. (2022)

also employed ensemble learning algorithms like Random Forest and Canonical

Correlation Forest (CCF), achieving robust results in both pixel-based and object-

based burn severity classification (Tonbul et al. [2022]). These studies illustrate

the versatility of machine learning for mapping fire-affected regions, regardless of

ecosystem type. Recent advancements in deep learning have taken these techniques

even further. Hu et al. (2023) used UNet and Attention UNet models to successfully

segment burned areas in Landsat data, with a mean Intersection over Union (mIoU)

of 0.78 and a Kappa coefficient approaching 0.90 (Hu et al. [2023]). In Alaska, deep
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neural networks applied to MODIS data overcame class imbalance issues, achieving

a recall score of 0.96 for identifying wildfire pixels (Langford et al. [2018]). One

notable deep learning development is Seydi et al. (2022) Burnt-Net model, which

uses Sentinel-2 data and deep learning morphological networks to map burned

areas with an impressive accuracy of over 97 percent (Seydi et al. [2022]). This

technology shows how post-fire assessments are becoming increasingly automated

and precise. These developments collectively highlight a transformative phase in

burn severity mapping, where machine learning and deep learning provide more

nuanced insights and operational efficiencies. Machine learning and deep learning

are transforming how we assess and respond to wildfires, offering more nuanced

insights and improving analysis efficiency. As these techniques evolve, they can

revolutionize fire severity mapping, real-time monitoring, and long-term wildfire

management strategies. This integration of advanced technology is crucial for

better preparing for the increasing wildfire risks posed by climate change.

Fire Occurrence and Detection

Accurate detection and monitoring of fire occurrences are essential for wildfire

management and environmental conservation (Thapa et al. [2021]). Advances in

remote sensing technology and computational methods have greatly enhanced our

ability to detect and predict fires with increasing speed and accuracy. Historically,

fire detection relied primarily on ground-based observations and reports. While

valuable, these methods were limited in scope and often delayed. Satellite technol-

ogy has revolutionized the field by providing real-time data over large and remote

areas (Barmpoutis et al. [2020]). Satellites equipped with thermal sensors, such as

MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible et

al.), have become essential for identifying heat signatures from active fires, offering
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critical information for timely responses (nas [2023b]). Before the widespread

use of satellite technologies, early mathematical models aimed at predicting fire

occurrences were developed. For example, (Burrows et al. [1995]) applied a negative

binomial model related to fire danger ratings, while (Cunningham and Martell

[1973]) utilized a Poisson model based on fuel moisture levels. These early sta-

tistical models laid the groundwork for more advanced methods in fire dynamics

research (Taylor et al. [2013]). Machine learning (ML) methods have emerged as

prominent tools in predicting fire occurrences and detecting events in recent years.

Standard ML techniques include Random Forests (RF), Support Vector Machines

(SVMs), Artificial Neural Networks (ANNs), and deep learning models such as

Convolutional Neural Networks (CNNs). These advanced computational techniques

offer greater accuracy and efficiency in analyzing complex datasets for fire detection

and prediction, significantly advancing the field from earlier approaches. One

early application of artificial neural networks (ANN) in wildfire science came in

1996 when (Vega-Garcia [1996]) applied ANN to predict human-caused wildfires in

Alberta, Canada. Their model achieved an accuracy rate of 85 percent in predicting

areas without fire and 78 percent in identifying areas with fire. Shortly afterward,

in 2002, (Alonso-Betanzos et al. [2003]) used neural networks to estimate fire risk

levels in Galicia, Spain, a wildfire-prone region. Their feedforward neural network

model, with a 6-9-1 topology, performed well in classifying fire risks into four

categories, with an accuracy of 77.2 percent. Similarly, the Fire Ignition Index

(FII) was developed using neural networks, synthesizing indices such as the Fire

Weather Index (FWI), Fire Hazard Index (FHI), and Fire Risk Index (FRI). The

FII model showed high correct classification rates for fire instances (Vasilakos et al.

[2007]). (Dutta et al. [2013]) analyzed ten neural network models to predict fire

incidences based on climate data. The study found that the Elman Neural Network

was the most effective, achieving an average accuracy of 94 percent, with other
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models like the Time Delay Neural Network and Recurrent Neural Network also

showing strong performance with accuracies of 88.21 percent and 92.77 percent,

respectively. While ANNs are widely used in fire prediction, other models have

also proven effective. For instance, SVMs have been applied to deduce fire hazard

levels from meteorological data, demonstrating the versatility of machine learning

methods (Sakr et al. [2010]). In one study, (Sakr et al. [2011]) compared ANN and

SVM methods for forest fire prediction using minimal weather parameters such as

relative humidity and cumulative precipitation, showcasing the potential to reduce

costs and complexity. Additionally, (Yu et al. [2005]) developed a real-time forest

fire detection and prediction system using a neural network within a wireless sensor

network, emphasizing the importance of quick and accurate responses to emerging

fire threats. In recent years, advanced neural network architectures, including

CNNs and multilayer perceptrons (MLPs), have been widely adopted for global

wildfire susceptibility prediction. Studies such as (Zhang et al. [2021]) offer insights

into their comparative effectiveness and explore the interpretability of CNNs in

this context. Random Forest (RF) use in fire occurrence prediction has gained

momentum since 2012. Stojanova et al. [2012] conducted an extensive analysis

comparing multiple machine learning techniques for predicting wildfire incidents,

using a dataset that combined geographical, remote sensing, and meteorological

data from Slovenia. Their study compared several classifiers, including K-Nearest

Neighbors (KNN), Näıve Bayes, Decision Trees (J48 and jRIP), Logistic Regression

(LR), SVM, and Bayesian Networks (BN). Another study by (Oliveira et al. [2012])

compared Multiple Linear Regression and RF methods to assess fire occurrence

predictors in Europe, finding that RF provided superior predictive accuracy. The

study also identified vital variables such as precipitation, soil moisture, and socio-

economic factors as crucial for determining fire risk.
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Feature Selection

In machine learning and predictive modelling, feature selection is a crucial process

that significantly influences model performance, interpretability, and generalization.

This process involves identifying and selecting a subset of relevant features (variables

or predictors) for model construction, simplifying the models, reducing overfitting,

and improving model robustness.

Feature selection is crucial in machine learning and predictive modelling, espe-

cially in complex domains like wildfire prediction. The process involves selecting a

subset of relevant variables to improve prediction models’ accuracy, efficiency, and

interpretability. This step is crucial in wildfire prediction due to the high dimen-

sionality of environmental, meteorological, and topographical data. While feature

selection research in wildfire prediction is somewhat limited, it plays a pivotal role in

identifying which environmental, meteorological, and topographical variables most

significantly impact fire incidents and their spread. For example,Sadrabadi and

Innocente [2023] demonstrated the application of feature selection techniques across

various machine learning models such as Random Forest (RF), Extra Trees (XT),

XGBoost (XGB), and CatBoost (CatB) in the context of wildfire prediction. The

analysis revealed that certain features, including terrain slope and specific humidity

indices, were consistently deemed less necessary across all models, suggesting their

limited influence on fire prediction accuracy. Furthermore, Fernández-Garćıa et al.

[2022] underscores the Normalized Difference Water Index (NDWI) as a pivotal

predictor for assessing burn severity. Notably, NDWI, when applied with a cubic

predictive model, demonstrated the most substantial correlation with burn severity

among the evaluated variables. This relationship is characterized by an inverse

association at intermediate NDWI values, as evidenced by the highest nRMSE and

R² metrics, pinpointing NDWI’s critical role in burn severity modelling. Building
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upon that Wang et al. [2024] study, trained their model on sixteen features derived

from detailed meteorological, human activity, topography, fuel characteristics, and

geographical data, which was consistently selected across models for their predic-

tive relevance. These features include average daily mean, maximum, and dew

point temperatures (Tmean et al., respectively), maximum vapour pressure deficit

(VPDmax), building coverage (BldgCover), slope, digital elevation model (DEM),

and the Normalized Difference Vegetation Index (NDVI). Furthermore, Tracy et al.

[2018] novel approach in ecological niche modelling for wildfire prediction leverages

a unique random subset feature selection algorithm (RSFSA) to optimize the

variable selection. Wang et al. (2024) took a similar approach by focusing on

16 features derived from meteorological data, human activity, topography, fuel

characteristics, and geographical information. Their model emphasized the predic-

tive power of variables like average daily mean temperature (Tmean), maximum

vapour pressure deficit (VPDmax), building coverage (BldgCover), and Normalized

Difference Vegetation Index (NDVI), demonstrating the importance of both human

and environmental factors in predicting wildfire behaviour (Khosravi et al. [2023]).

Metaheuristic Algorithms for Enhancing Predictive Accuracy in Wild-

fire Science

Metaheuristic algorithms have significantly advanced the accuracy of wildfire predic-

tion models by optimizing critical parameters that capture complex fire behaviours.

These algorithms are integral to modern fire management strategies, offering rapid,

reliable predictions for timely interventions. A landmark study by Pereira et al.

(2024) demonstrated the potential of Genetic Algorithms (GA), Particle Swarm

Optimization (PSO), and Differential Evolution (DE) to refine the Rothermel

model, a well-established wildfire spread predictor. This study optimized fuel
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moisture, vegetation density, and wind speed. Among these, DE proved remarkably

effective, achieving high precision with minimal adjustments, a crucial advantage

in dynamic wildfire scenarios (Pereira et al. [2024]). Expanding on these findings,

Jaafari et al. (2019) explored the integration of metaheuristics with fuzzy logic

to enhance wildfire predictions further. They developed a hybrid model using

the Adaptive Neuro-Fuzzy Inference System (ANFIS) combined with GA and

the Firefly Algorithm (FA). The GA-ANFIS model, achieving an Area Under

the Curve (AUC) of 0.92, illustrated the enhanced capability of this approach to

model complex environmental interactions affecting wildfire risks (Jaafari et al.

[2019]). In 2022, Pereira and colleagues revisited these techniques to concentrate

on reducing prediction errors. Once again, DE stood out for its efficiency, adjusting

the Rothermel model to deliver optimal predictions rapidly, aiding fire managers

in resource allocation (Pereira et al. [2022]). Recent studies have shifted focus

towards identifying the most influential factors for wildfire risk. In 2023, Zhang et

al. developed a GA-optimized neural network that pinpointed critical predictors

such as Historical Fire Density (HFD), Vegetation Type (VT), and Average An-

nual Temperature (AAT). This model’s accuracy reached 83.7%, underscoring the

importance of targeted feature selection in enhancing predictive precision (Zhang

et al. [2023]). Advanced metaheuristic techniques were also applied to optimize

neural networks and hybrid models. Nur et al. (2022) utilized Grey Wolf Optimizer

(GWO) and Imperialist Competitive Algorithm (ICA) to optimize a Convolutional

Neural Network (CNN) for mapping wildfire susceptibility, achieving an AUC of

0.974 and RMSE of 0.334 Nur et al. [2022]. Similarly, AlFugara et al. (2021)

combined Support Vector Regression (SVR) and Adaptive Neuro-Fuzzy Inference

System (ANFIS) with Whale Optimization Algorithm (WOA) and Simulated An-

nealing (SA), achieving AUROC values up to 0.965 Al-Fugara et al. [2021]. Azizi

et al. (2023) also leveraged metaheuristics for hybrid feature selection in Iran,
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identifying key predictors for enhancing regional wildfire risk mapping Azizi et al.

[2023]. Adapting metaheuristics for specific regional conditions, Dieu Tien and

colleagues tailored a Particle Swarm Optimization Neural Fuzzy (PSO-NF) model

for Vietnam’s unique environmental settings, such as high rainfall and dense vegeta-

tion. Their model achieved an AUC of 0.932, highlighting the adaptability of PSO

to diverse ecological landscapes (Bui et al. [2017]). In a recent innovation, Tran

et al. (2024) utilized emerging algorithms like Whale Optimization, Black Widow

Optimization, and Butterfly Optimization in conjunction with XGBoost to predict

wildfire risks in Hawaii. Their best model, BWO-XGBoost, achieved an AUC of

0.9269, showcasing the robustness of combining advanced algorithms with machine

learning techniques to tackle the challenges of wildfire prediction across varied

terrains (Tran et al. [2024]). Furthermore, Gharehchopogh et al. [2022] introduced

the Random Subset Feature Selection Algorithm (RSFSA) as a novel approach for

ecological niche modelling in wildfire prediction. This algorithm was particularly

effective in identifying terrain slope and humidity indices as key predictors influenc-

ing wildfire occurrences. By systematically evaluating subsets of features, RSFSA

enabled the refinement of predictive models by isolating variables with the highest

impact on ecological niche dynamics. Metaheuristic algorithms add another layer

to these models, improving prediction accuracy and optimizing model parameters.

Algorithms like Genetic Algorithms (GA), Particle Swarm Optimization (PSO),

and Differential Evolution (DE) have become essential in fine-tuning models for

wildfire prediction. Hybrid models, such as ANFIS-GA, PSO-NF, and GA-BPNN,

which combine metaheuristics with fuzzy logic or machine learning, have shown

great promise in the real-time mapping of wildfire susceptibility. These models help

manage the complex environmental factors that drive wildfire behaviour despite

the advancements and diverse applications of metaheuristic algorithms in wildfire

science. Furthermore, implementing spiral dynamics in metaheuristic algorithms

23



for feature selection in wildfire science has been limited. Spiral optimization meth-

ods, known for their ability to escape local optima and explore the solution space

more thoroughly, could significantly improve modelling the complex interactions

of variables that influence wildfire behaviour and risks. Although spirals have yet

to be used with metaheuristics in wildfire science, their demonstrated success in

other fields provides compelling reasons to consider their application. For instance,

the Linear Adaptive Spiral Dynamics Algorithm (LASDA) dynamically adjusts

spiral parameters to enhance convergence and fitness accuracy, as demonstrated

in system modelling. By leveraging adaptive linear spirals, LASDA has shown its

utility in identifying parameters in flexible systems Nasir et al. [2016]. Similarly, the

Spiral Search Mechanism integrated into the Equilibrium Optimizer (EO) employs

logarithmic spirals to improve the diversity and robustness of search processes.

This approach has proven effective in path planning for mobile robots. It highlights

its potential to balance exploration and exploitation Ding et al. [2023], and Spiral

Dynamics Optimization (SDO) uses logarithmic spirals to address global optimiza-

tion challenges by balancing diversification and intensification. Its applications

in engineering optimization further showcase its adaptability to high-dimensional

problems Omar et al. [2022]. Furthermore, the Hybrid Particle Swarm Optimization

with Spiral-Shaped Mechanism (HPSO-SSM) tackles the ”curse of dimensionality”

by employing geometric spirals for optimizing feature subsets, significantly improv-

ing classification accuracy in high-dimensional datasets Xie et al. [2021]. Despite

the advancements and diverse applications of metaheuristic algorithms in wildfire

science, specific gaps present opportunities for future research. Spiral dynamics

have not been integrated into metaheuristic algorithms for feature selection in

wildfire science, leaving unexplored potential to enhance model performance and

address optimization challenges. Moreover, the Liver Cancer Algorithm (LCA), a

recently introduced metaheuristic, has not yet been combined with spiral dynamics
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to solve optimization problems or perform feature selection. Such an integration

could significantly enhance its ability to navigate large, complex solution spaces.

Finally, no studies have applied metaheuristic algorithms as feature selection tools

for wildfire prediction in Canadian provinces, where diverse environmental factors

influence wildfire behaviours. Addressing these gaps could provide transformative

advancements in wildfire modelling and prediction.

25



Chapter 3

Methodology

The methodology chapter details the extensive steps to develop, implement, and

assess a predictive wildfire model, addressing the complexity and class imbalance

commonly encountered in wildfire datasets. This research applies advanced meta-

heuristic algorithms for feature selection across eight Canadian provinces, aiming

to enhance predictive accuracy by identifying critical environmental variables that

significantly impact wildfire risk. The chapter is structured to clarify each compo-

nent of the research design, from data collection and study area specification to

algorithmic selection and model evaluation. The methodology follows a structured

framework, beginning with an overview of the study’s objectives, hypotheses, and

overall approach, setting the foundation for the research. Data collection and

sources are then explored in detail, specifying the data types used—such as satellite

observations, meteorological data, vegetation indices, and historical wildfire occur-

rences—and discussing preprocessing steps to ensure data quality and consistency.

Following this, the study areas are introduced, highlighting the unique environmen-

tal and climate characteristics of the eight selected Canadian provinces to enhance
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the robustness and relevance of the analysis. In the core sections of this chapter, we

delve into the research design by describing the theory behind each metaheuristic

algorithm and providing details on implementation and parameterization. We also

comprehensively outline the predictive modelling process, covering model training,

validation, and testing procedures. Finally, evaluation metrics provide a structured

approach for comparing and analyzing each algorithm’s effectiveness. This ensures

that the results align with the study’s objectives and contribute valuable insights

into wildfire prediction across diverse environmental settings.

3.1 Study Framework

This study follows a quantitative, empirical framework to advance wildfire pre-

diction across diverse Canadian provinces through an in-depth evaluation and

refinement of metaheuristic algorithms for feature selection. By leveraging data-

driven methodologies, the research framework is structured to test the predictive

capabilities of various metaheuristic algorithms and enhance their computational

efficiency and suitability for wildfire prediction tasks. Particular attention is given

to refining the Spiral Liver Cancer Algorithm (LCA), with improvements designed

to resolve stability and convergence issues, strengthening its role in predictive

modelling.

In addition, the framework emphasizes identifying the most influential envi-

ronmental variables that drive wildfire occurrences within each unique provincial

context. This approach aims to tailor model insights to the distinct climatic and

environmental conditions across provinces, providing a more nuanced and accurate

predictive capability. Through systematic analysis, the study framework ensures

rigorous assessment and comparison of the selected algorithms, contributing to
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wildfire risk management and the broader field of environmental predictive mod-

elling.

3.1.1 Objective Of The Study

The primary objectives of this research are as follows:

• Enhance Wildfire Prediction Accuracy: Develop and optimize wildfire

prediction models by applying metaheuristic algorithms for effective feature

selection across diverse Canadian provinces.

• Evaluate Metaheuristic Algorithms: Test and compare multiple algo-

rithms to determine their impact on feature selection and effectiveness in

enhancing wildfire prediction models.

• Algorithm Refinement and Development: Integrate spiral updates

to improve the standard Liver Cancer Algorithm (LCA). This refinement

addresses convergence and stability issues, enhancing LCA’s efficiency and

accuracy in feature selection for wildfire prediction.

• Identification of Key Predictive Variables: Pinpoint the environmental

variables most strongly associated with wildfire occurrences, focusing on

optimizing model inputs for more accurate predictions.

• Comparative Analysis: Conduct a comprehensive analysis of each al-

gorithm’s predictive accuracy, computational efficiency, and scalability to

identify the most suitable approaches for real-world wildfire risk management

applications.
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3.1.2 Hypotheses and Research Questions

The following hypotheses and research questions guide this study:

• Hypothesis 1: Training wildfire prediction models with selected features

derived from metaheuristic algorithms will outperform models trained using

all features, leading to better model efficiency and prediction accuracy.

• Hypothesis 2: The refined Spiral Liver Cancer Algorithm will outperform

other metaheuristic methods regarding wildfire prediction accuracy and sta-

bility.

• Hypothesis 3: Each province will have unique environmental features

contributing more significantly to wildfire occurrences, reflecting region-

specific conditions impacting fire risk.

These hypotheses guide our study with the following research questions:

• Research Question 1: How effectively do metaheuristic algorithms improve

feature selection accuracy and computational efficiency in wildfire prediction

models compared to using all available features?

• Research Question 2: Does the Spiral Liver Cancer Algorithm provide

superior feature selection strength and prediction accuracy performance

compared to other metaheuristic methods?

• Research Question 3: Which environmental features most predict wildfire

risk in each Canadian province, and how do these critical predictors vary

regionally?
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3.2 Data Collection and Sources

This study combines data from two primary sources: FIRMS (Fire Information for

Resource Management System) for fire occurrence data and ERA5 for atmospheric

and environmental data. These sources provide comprehensive and reliable datasets

for wildfire prediction and feature selection across diverse Canadian provinces.

3.2.1 Data Types and Origin

The datasets utilized in this study include:

1. FIRMS (Fire Information for Resource Management System):

FIRMS offers global fire occurrence data derived from NASA’s MODIS and VIIRS

sensors, with near real-time data available approximately three hours after the

satellite overpass. The FIRMS Fire Map provides an inter-active library of active

fire detections, enabling historical and current data analysis. This study utilizes

archived data from 2010 to 2023 (NASA [2024]).

2. ERA5 Reanalysis Dataset: ERA5, produced by ECMWF (European

Centre for Medium-Range Weather Forecasts), is a comprehensive reanalysis dataset

covering climate and weather data from 1940 onwards. Reanalysis combines model

data with observations worldwide into a complete and uniform dataset. ERA5

provides hourly atmospheric, ocean-wave, and land-surface data and includes a

10-member ensemble uncertainty estimate at three-hour intervals. This dataset

captures various environmental and climatic conditions, including temperature,

wind, humidity, and precipitation, which are crucial for identifying conditions

contributing to wildfire occurrences(ERA [2024], Bell et al. [2021]).
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Table 3.1: Summary of Features from FIRMS and ERA5 Data Sources

Source Feature Data Type Description

FIRMS Latitude Float Latitude coordinate of fire occur-

rence

FIRMS Longitude Float Longitude coordinate of fire occur-

rence

FIRMS Brightness Tem-

perature (TI4)

Continuous Brightness temperature measured

by MODIS or VIIRS, used for de-

tecting high-temperature events

FIRMS Brightness Tem-

perature (TI5)

Continuous Secondary brightness temperature

measure, complementing TI4 in

assessing fire intensity

FIRMS Scan Float Width of the satellite scan line at

the fire’s location, affecting spatial

resolution

FIRMS Track Float Length of the satellite track at the

fire’s location

FIRMS Acquisition Date Date Date of fire detection

FIRMS Acquisition

Time

Integer Time of fire detection in HHMM

format

FIRMS Satellite Categorical Satellite identifier (e.g., MODIS,

VIIRS)

FIRMS Instrument Categorical Instrument used for detection

(e.g., MODIS, VIIRS)
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Source Feature Data Type Description

FIRMS Confidence Categorical

(Low, Medium,

High)

Confidence level in fire detection

FIRMS Version Categorical FIRMS dataset version identifier

FIRMS Fire Radiative

Power (FRP)

Continuous Energy output of the fire, indicat-

ing fire intensity

FIRMS Day/Night Categorical (Day,

Night)

Indicates whether the fire detec-

tion occurred during day or night

ERA5 10m U Compo-

nent of Wind

Continuous Eastward wind speed component

at 10 meters above ground

ERA5 10m V Compo-

nent of Wind

Continuous Northward wind speed component

at 10 meters above ground

ERA5 2m Dewpoint

Temperature

Continuous Dewpoint temperature at 2 me-

ters, affecting fuel moisture

ERA5 2m Temperature Continuous Air temperature at 2 meters, crit-

ical for ignition conditions

ERA5 High Vegetation

Cover

Continuous Fraction of high vegetation cover,

contributing to fuel availability

ERA5 Leaf Area Index

(High Vegeta-

tion)

Continuous Leaf area index for high vegeta-

tion, showing vegetation density

ERA5 Leaf Area Index

(Low Vegetation)

Continuous Leaf area index for low vegetation,

relevant for fire-prone areas

ERA5 Low Vegetation

Cover

Continuous Fraction of low vegetation cover
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Source Feature Data Type Description

ERA5 Mean Sea Level

Pressure

Continuous Mean atmospheric pressure at sea

level

ERA5 Mean Wave Di-

rection

Continuous Average wave direction, relevant

for coastal regions

ERA5 Mean Wave Pe-

riod

Continuous Average wave period

ERA5 Sea Surface Tem-

perature

Continuous Temperature of the sea surface,

impacting local climate

ERA5 Significant Wave

Height

Continuous Height of combined wind waves

and swell

ERA5 Surface Pressure Continuous Atmospheric pressure at the sur-

face

ERA5 Total Cloud

Cover

Continuous Fraction of cloud cover, influenc-

ing solar radiation

ERA5 Total Precipita-

tion

Continuous Total precipitation, affecting fuel

moisture

ERA5 Type of High

Vegetation

Categorical Classification of high vegetation

type

ERA5 Type of Low Veg-

etation

Categorical Classification of low vegetation

type

ERA5 Downward UV

Radiation at Sur-

face

Continuous Amount of UV radiation reaching

the surface

ERA5 Surface Latent

Heat Flux

Continuous Heat exchange process affecting

temperature and humidity
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3.2.2 Preprocessing Steps

A series of preprocessing steps was conducted to ensure data quality and consistency

across datasets from FIRMS and ERA5. These steps standardized the data, handled

missing values, and applied transformations to enhance model performance.

Merging

This study created a unified dataset by combining environmental data from ERA5

with fire occurrence data from FIRMS, ensuring the data was aligned geographically

and temporally. To achieve this, we rounded latitude and longitude values in

both datasets to one decimal place so that data points would match in location.

Additionally, we separated each dataset’s date and time information into distinct

fields, then standardized FIRMS timestamps by rounding them to the nearest

three-hour interval to match ERA5’s time intervals. Using these adjusted fields,

we merged the datasets to connect fire occurrences with relevant environmental

conditions.

To enhance reliability, we applied confidence filtering to the FIRMS data. For

MODIS, we retained only high-confidence fire detections, while for VIIRS, we

included all detections marked as ”High,” ”Medium,” or ”Low.” This filtering

emphasized the most reliable detections from each satellite source. Each detection

represented a distinct area, with fire areas estimated at 1 km² for MODIS and

approximately 0.14 km² for VIIRS, allowing us to calculate the total fire area and

support spatial analysis.

For further refinement, we used the DBSCAN clustering algorithm to group

nearby detections, assuming closely located detections were part of the same fire.
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After clustering, duplicate entries within each cluster were removed, leaving one

representative data point per fire event, minimizing redundancy and improving

data accuracy.

To create a comprehensive dataset, we processed each environmental variable

separately for each year from 2010 to 2022. In the final integration step, we

combined all variables into a master dataset, setting up a unified source ready for

feature selection and predictive modelling.

Feature Engineering

Adding derived features informed by domain-specific knowledge can significantly

enhance model accuracy in wildfire prediction. These features capture the complex

dynamics governing wildfire behaviour. Below are the derived features and the

reasoning for their inclusion:

Wind Speed (ws) Rationale: Wind speed is essential in wildfire spread, as

higher speeds enable ember transport and intensify fire spread Prapas et al. [2022].

Equation 1: Wind speed calculation based on vector components.

ws =
√

u102 + v102 (3.1)

Wind Direction (wd) Rationale: Wind direction influences the path of embers,

which affects the fire’s spread Prapas et al. [2022].
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Equation 2: Calculation of wind direction in degrees.

wd =

(
arctan

(
v10

u10

)
× 180

π

)
mod 360 (3.2)

Equation 3: Adjusted formula to align with 360° scale.

wd = (wd + 180) mod 360 (3.3)

Relative Humidity (RH) Rationale: Lower humidity increases the likelihood

of ignition, making it a crucial factor in wildfire risk Taneja et al. [2021].

Equation 4: Relative humidity based on the August-Roche-Magnus

approximation.

RH = 100×
exp

(
17.625×Td

243.04+Td

)
exp

(
17.625×T
243.04+T

) (3.4)

Datetime Features Temporal features, such as day of the week, week of the year,

month, and season, capture patterns in wildfire occurrences, identifying seasonality

and periodic trends.

Day of the Week (day of week) Rationale: Certain days may show

different wildfire frequencies due to human activity or weather patterns, and this

feature allows the model to learn these patterns.

Week of the Year (week) Rationale: Wildfire activity varies seasonally,

and the week number helps capture this, especially during peak wildfire seasons.
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Month (month) Rationale: The month indicates the time of year, enabling

the model to detect monthly trends in wildfire occurrences, which are often higher

in warmer months.

Season (season) Rationale: Wildfire risk increases in specific seasons, such

as summer. Mapping each month into a season provides insight into broader

temporal patterns.

Season Mapping:

season =



Spring if month ∈ {3, 4, 5}

Summer if month ∈ {6, 7, 8}

Autumn if month ∈ {9, 10, 11}

Winter if month ∈ {12, 1, 2}

Dew Point Temperature Ranking (dewpoint rank) Rationale: Dew point

temperature affects wildfire risk by influencing atmospheric moisture. Lower

dew points generally indicate drier conditions conducive to wildfire. The dew

point ranking provides a straightforward feature representing wildfire risk due to

atmospheric humidity.

Temperature Category (temperature category) Rationale: Temperature

is crucial in wildfire risk, as higher temperatures can increase likelihood and intensity.

Categorizing temperature simplifies the model’s interpretation of temperature’s

role in wildfire risk.

Categorization Logic:
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• Low : Temperatures below 15°C

• Medium: Temperatures between 15°C and 25°C

• High: Temperatures above 25°C

Detailed Wildfire Risk Score (wildfire risk) Rationale: The wildfire risk

score is a calculated target variable synthesizing various environmental, seasonal,

and atmospheric factors. This score captures conditions influencing fire occurrence,

categorizing wildfire risk for training.

Supporting Factors in Calculation: The risk score integrates:

• Precipitation: Dry conditions increase fire risk, while precipitation reduces

it (Wasserman and Mueller [2023], Abatzoglou and Kolden [2013], Abatzoglou

and Williams [2016], Abatzoglou et al. [2017]).

• Wind Speed: Higher speeds help fires spread by supplying oxygen and

dispersing embers (Liu et al. [2021]).

• Vegetation Density: Dense vegetation offers more fuel, raising the likelihood

and intensity of wildfires (Loudermilk et al. [2022]).

• Seasonal Influence: Fire activity is higher in summer due to temperature

and humidity patterns (Wasserman and Mueller [2023], Abatzoglou and

Kolden [2013], Abatzoglou and Williams [2016]).

• Cloud Cover: Low cloud cover raises fire risk by allowing more sunlight

and heat, while high cover reduces it (Drobyshev et al. [2021]).
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• Temperature and Humidity Interactions: High temperatures, low hu-

midity, and low pressure create favourable conditions for fires (Afolayan et al.

[2024]).

• Cluster Density Risk Score: Historical fire clusters, identified through

DBSCAN, adjust the risk score based on previous activity in the area.

• Wind Direction: South and Southeast winds, associated with drier air,

increase fire risk (Fazel-Rastgar and Sivakumar [2022]).

This scoring approach aligns with research on environmental factors that influ-

ence wildfires. The calculated score, categorized into risk levels (Low, Moderate,

High), gives the model essential insights for predicting wildfire risk.

Threshold-Based Risk Categorization:

wildfire risk =


High if risk score ≥ 19

Moderate if risk score ≥ 15 and < 19

Low if risk score < 15

The predictive model can better understand wildfire behaviour by incorporating

thoughtfully designed features rooted in environmental science. Variables such as

wind speed, relative humidity, and seasonality are essential in assessing wildfire risk.

This process transforms complex data into clear and meaningful factors, improving

the model’s ability to make accurate and reliable predictions about wildfire risk.
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3.3 Study Areas

This research examines datasets from eight Canadian provinces: Alberta, British

Columbia, Manitoba, Ontario, Northwest Territories, Quebec, Saskatchewan, and

Yukon. By including such a diverse range of regions, we aim to address the

variability in environmental and climatic factors that influence wildfires, ensuring

our model is comprehensive and adaptable.

Alberta

Alberta, located at 53.9333°N and 116.5765°W, spans approximately 661,848 km².

The province’s landscape transitions dramatically, from the rugged Rockies in the

west to sprawling prairies in the east. Precipitation varies significantly, from a dry

300 mm in the southeast to over 600 mm in the mountainous regions. Wildfires

are most common between May and September, fueled by hot, dry conditions and

gusty winds. Alberta’s varied geography makes it a fascinating case for studying

how local terrain and weather impact wildfire behaviour.

British Columbia

British Columbia, at 53.7267°N and 127.6476°W, covers roughly 944,735 km² and

is one of Canada’s most ecologically diverse provinces. BC’s landscape is as varied

as its wildfire patterns, from lush coastal rainforests to the dry interior grasslands.

The province’s wildfire season runs from spring to early fall, with the highest risks

in its arid interior during the summer. BC’s unique interplay between elevation,

temperature, and humidity offers critical insights into wildfire ignition and spread
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dynamics.

Manitoba

Manitoba, situated at 53.7609°N and 98.8139°W, spans 647,797 km² and is charac-

terized by its continental climate, with cold winters and warm, humid summers.

The southern parts of the province receive more rainfall than the northern boreal

forests, creating a gradient in fire risk. Wildfires typically peak from May to

September, with weather conditions like dry spells and heatwaves significantly

increasing the likelihood of fires. Manitoba’s mix of forests and prairies makes it a

challenging yet rewarding region for wildfire analysis.

Ontario

Ontario, located at 51.2538°N and 85.3232°W, is Canada’s most populous province,

covering about 1,076,395 km². Its climate ranges from the humid south to the

subarctic north, with precipitation levels between 700 mm and over 1,000 mm

annually. Wildfires are most active from April to October, with the northern

and central regions facing the highest risks due to dense forests and periodic dry

conditions. Ontario’s landscape’s sheer size and variability make it a key area for

understanding how climate and geography interact to influence wildfire patterns.

Northwest Territories

The Northwest Territories, situated at 64.8255°N and 124.8457°W, is vast, covering

approximately 1,346,106 km². This northern region experiences long, frigid winters

and brief, mild summers. Annual precipitation is sparse, usually below 400 mm,
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with most falling during summer. The wildfire season here peaks from June to

August, driven by dry weather and strong winds in its extensive boreal forests.

This region’s remote and rugged nature presents significant challenges for wildfire

management and prediction, making it a unique study area.

Quebec

Quebec, located at 52.9399°N and 71.3100°W, is Canada’s largest province by area,

spanning 1,542,056 km². Its climate shifts from the humid south, where cities

like Montreal and Quebec City are located, to the cold, subarctic north. Wildfire

occurs between May and September, with the northern boreal forests particularly

susceptible. Quebec’s vast and varied terrain requires wildfire models to account

for densely forested areas and less vegetated zones, offering valuable insights into

regional fire dynamics.

Saskatchewan

Saskatchewan, centered at 52.9399°N and 106.4509°W, encompasses about 651,900

km². Known for its expansive prairies and northern boreal forests, the province

experiences a continental climate with warm summers and cold winters. Annual

precipitation ranges from about 300 mm in the drier southwest to 500 mm in the

forested north—the wildfire season peaks from May to September. Saskatchewan’s

blend of grasslands and forests provides a unique perspective on how different

ecosystems respond to fire risks.
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Yukon

Yukon, located at 64.2823°N and 135.0000°W, spans approximately 482,443 km².

Its dramatic mountain ranges and subarctic climate define the territory, with long,

harsh winters and brief, warm summers. Precipitation is limited, usually below 400

mm annually, with most of it as summer rain—wildfire season peaks from June to

August, with fire activity influenced by dry spells and fluctuating temperatures.

Yukon’s remote and rugged environment makes wildfire prediction complex, high-

lighting the importance of localized data in understanding fire behaviour.

While this research focuses on eight provinces across Canada, certain regions

were excluded due to limited wildfire data availability or lower wildfire incidence,

which would contribute minimally to the study’s focus on high-risk areas. Con-

centrating on regions with diverse and complex wildfire patterns, this research

provides insights relevant to the areas most impacted by wildfires.

3.4 Feature Selection and Metaheuristic Algo-

rithm Implementation

In predictive modelling, selecting the most informative features is crucial, particu-

larly in applications like wildfire prediction, where vast datasets include complex

interactions between variables. The objective of feature selection in this study is

to identify a subset of predictive features that improve model accuracy and inter-

pretability while reducing computational overhead. Given the high-dimensional

nature of wildfire datasets, effective feature selection can streamline model per-

formance by reducing noise and focusing only on variables that directly impact
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Figure 3.1: Map of Study Area across Canadian Provinces

wildfire risk.

44



3.4.1 Metaheuristic Algorithm Rationale

Metaheuristic algorithms are particularly advantageous in feature selection due to

their adaptability in navigating large, complex search spaces and handling non-

linear relationships among features. This study employs a variety of metaheuristic

algorithms, each selected for its unique strengths in exploring and exploiting

potential feature subsets.

This collection of algorithms includes population-based and solution-based

methods, balancing exploration (diversifying the search) and exploitation (focusing

on promising areas in the search space). Each algorithm contributes distinct search

behaviours, enhancing the likelihood of identifying optimal or near-optimal subsets

in the high-dimensional feature space of wildfire prediction datasets.

Wrapper Model for Feature Evaluation In this study, all metaheuristic

algorithms employ a wrapper model approach, integrating a predictive model to

evaluate the performance of each candidate feature subset (Kohavi and John [1997],

Aboudi and Benhlima [2016]). The wrapper method is advantageous for feature

selection as it iteratively assesses feature subsets based on predictive accuracy,

allowing each algorithm to prioritize combinations that enhance model performance

rather than relying solely on intrinsic characteristics of the data. A Random Forest

(RF) classifier serves as the evaluation model here, with predictive quality measured

through accuracy and F1-score.

In this wrapper framework:

• Encoding Feature Subsets: Each candidate solution, or agent, represents

a unique subset of features. Using binary encoding, features are denoted as
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included (1) or excluded (0), allowing metaheuristic algorithms to explore a

range of feature combinations effectively.

• Performance Evaluation: For each feature subset, the wrapper model

trains an RF classifier, assessing its predictive accuracy. This feedback guides

the search process, allowing algorithms to adjust their exploration toward

subsets that demonstrate improved model performance.

In the wrapper model’s evaluation process, we defined a fitness function for each

agent (feature subset), using a cross-validated XGBoost classifier to measure its

predictive effectiveness. This function calculates the fitness based on cross-validated

F1-scores, providing critical feedback to the metaheuristic algorithms. The fitness

function is represented as follows:

Equation 5: Fitness Function for Feature Subset Evaluation

fitness(A) =

0 if
∑

A = 0

1
k

∑k
i=1 F1(y

(i)
cv val, ŷ

(i)
cv val) otherwise

(3.5)

where:

• A is the binary vector representing the feature subset the agent chooses.

• k is the number of folds in cross-validation (set to 10 in this study).

• y
(i)
cv val and ŷ

(i)
cv val are the true and predicted labels for the validation set in

fold i, respectively.

• F1(·) denotes the F1 score function with a macro averaging strategy.
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If no features are selected (i.e.,
∑

A = 0), the fitness score defaults to zero

as a penalty. For agents selecting at least one feature, the mean F1 score across

cross-validation folds provides a fitness measure, with a higher score indicating a

more informative feature subset. The feature selection ratio is given by:

Equation 6: Feature Ratio Calculation

feature ratio =

∑
A

len(A)
(3.6)

This represents the proportion of selected features relative to the total feature

set, balancing feature inclusion with computational efficiency.

The metaheuristic algorithms iteratively refine feature subsets through this

wrapper-based approach, maximizing model performance by selecting the most

predictive features within wildfire datasets.

Key Parameters and Common Inputs/Outputs While each algorithm has

unique characteristics, they share common parameters and outputs, such as:

• Iterations (limit): The number of cycles each algorithm undergoes influ-

ences its convergence behaviour.

• Population Size: The number of candidate solutions (or agents) explored

in each iteration, balancing computational efficiency with the depth of explo-

ration.

• Training Data (Xtrain and ytrain): The input dataset comprising the

features and corresponding target variable is used to evaluate feature subsets.
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Common Outputs:

• Best Fitness Value (best fit val): The optimal fitness score achieved,

reflecting the quality of the selected feature subset.

• Fitness History (fitness history): Records fitness values over iterations,

useful for analyzing the algorithm’s convergence behaviour.

• Accuracy History (accuracy history): Tracks accuracy values over iter-

ations, providing insight into predictive performance.

• Feature Ratio History (feature ratio history): Shows feature ratios

across iterations, indicating the proportion of features selected.

3.4.2 Algorithm Descriptions

Atom Search Optimization (ASO)

Atom Search Optimization (ASO) is a physics-inspired metaheuristic algorithm

designed to solve complex optimization problems by mimicking atomic motion in

molecular dynamics. In ASO, each solution (or atom) interacts with others through

forces derived from molecular physics, allowing for both exploration of the search

space and intensification around promising solutions Zhao et al. [2018].

Algorithm Mechanics ASO is based on two main types of forces:

• Interaction Force: Derived from the Lennard-Jones potential, this force

represents attraction and repulsion between atoms, enabling atoms to either

converge around promising solutions or disperse to explore new areas.
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• Constraint Force: A secondary force directing atoms toward the best-known

solution, encouraging the algorithm to refine optimal solutions.

The position of each atom in ASO represents a potential solution, and its ”mass”

(related to the solution’s fitness) influences its acceleration. The algorithm balances

exploration and exploitation by adjusting the interaction forces over iterations,

with lighter atoms exploring new regions and heavier atoms focusing on optimal

solutions.

Parameter Settings The main parameters in ASO include:

• Iterations: Controls the algorithm’s stopping condition based on convergence

requirements.

• Population Size: The number of atoms, balancing computational efficiency

with search robustness.

• Depth Weight and Multiplier Weight: Parameters that control the

strength of interaction and constraint forces, influencing ASO’s balance

between exploration and exploitation.

Application to Feature Selection ASO’s ability to avoid local optima and

dynamically adapt to high-dimensional spaces makes it particularly useful for

feature selection in wildfire prediction. By selecting a subset of relevant features,

ASO enhances model performance while reducing computational costs, making it

ideal for large datasets with complex interrelationships Zhao et al. [2019].

Algorithm 1 Inputs and Outputs

Inputs:
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• Xtrain: Training data (features)

• ytrain: Training data (target)

• atomno: Number of atoms (agents) to maintain diversity in the search space.

• dim: Dimension of the feature space (number of features) being evaluated.

• limit: Maximum number of iterations, controlling the depth of the search

process.

• α, β, ω: ASO-specific hyperparameters influencing the balance between ex-

ploration and exploitation.

Outputs:

• best atom: Best feature subset (binary vector) discovered by the algorithm.

• best fit val: Best fitness value achieved, representing the quality of the selected

feature subset.

• fitness history: History of fitness values over iterations, useful for analyzing

convergence behaviour.

• accuracy history: Accuracy values over iterations, providing insight into

predictive performance.

• feature ratio history: Feature ratios over iterations indicate the proportion

of selected features.

Algorithm 1 Atom Search Optimization (ASO) for Feature Selection

1: Step 1: Initialize Population

2: for each atom i in range (0, atomno) do
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3: Generate a random binary vector of length dim to represent selected features

4: Initialize velocities for each feature in the atom

5: end for

6: Step 2: Calculate Initial Fitness

7: for each atom i do

8: Perform wrapper model evaluation using cross-validation with XGBoost

(see Equation 5).

9: Store fitness, accuracy, and feature ratio for each atom

10: end for

11: Find and store the best initial solution (best atom and best fit val)

12: Step 3: Optimization Loop

13: for iteration curr in range (1, limit + 1) do

14: for each atom i do

15: Update velocity using the formula:

velocity[i] = velocity[i] + β × (best atom− population[i])

16: Update position using V-function:

17: for each feature j in atom i do

18: Set position[j] = 1 if V (velocity[i][j]) > random() else 0

19: end for

20: Recalculate fitness for the new feature subset

21: Update best solution if the current fitness is better than best fit val

22: end for

23: Track fitness history, accuracy history, and feature ratio history

24: end for

25: Step 4: Return Results

26: Output: best atom, best fit val, fitness history, accuracy history,

feature ratio history
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Barnacles Mating Optimization (BMO)

The Barnacles Mating Optimizer (BMO) is a bio-inspired metaheuristic algorithm

that simulates the mating behaviours of barnacles. BMO emulates the biological

processes observed in barnacle reproduction, where individuals selectively mate

within a constrained range or disperse sperm broadly when mates are unavailable

nearby (Sulaiman et al. [2020]).

BMO’s optimization relies on two core dynamics:

• Mating Selection and Penis Length (Interaction Constraints): Each

barnacle selects mates within a limited ”penis length” (pl) distance, promoting

exploitation by mating with close solutions to refine promising regions. If

no suitable mate is within range, sperm casting occurs, simulating broad

dispersal to enable distant interactions, enhancing exploration and avoiding

local optima.

• Inheritance of Parental Traits (Reproductive Process): Offspring

are generated by combining traits from selected parent barnacles based on

the Hardy-Weinberg principle, which probabilistically blends characteristics.

This balances exploration and exploitation, adapting offspring traits across

iterations to refine potential solutions.

Parameter Settings in BMO: Fine-tuning these parameters is key to BMO’s

success:
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Penis Length (pl): Controls mating range, balancing exploration and exploita-

tion. Population Size: Sets the number of barnacles, impacting computational cost

and diversity. Iterations: Determines the number of optimization cycles based on

convergence needs.

Algorithm 2 Barnacles Mating Optimizer (BMO) for Feature Selection

1: Step 1: Initialize Population

2: for each barnacle i in range (0, pop size) do

3: Generate a random binary vector of length dim representing selected features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each barnacle i do

7: Perform wrapper model evaluation using cross-validation with XGBoost

(see Equation 5).

8: Store fitness for each barnacle

9: end for

10: Identify and store the best initial solution (best barnacle and best fitness)

11: Step 3: Optimization Loop

12: for each iteration in range (1,max iter + 1) do

13: for each barnacle i do

14: Find local mates within mating radius

15: if no local mates or random() ¡ sperm cast chance then

16: Select a global mate randomly (sperm casting)

17: else

18: Select a random local mate

19: end if

20: Generate offspring by:

a) Performing crossover between barnacle and mate
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b) Applying mutation based on the distance between barnacles

21: Evaluate fitness of offspring

22: if offspring fitness is better than current barnacle fitness then

23: Replace barnacle with offspring

24: end if

25: end for

26: Track best fitness for each iteration in fitness history

27: end for

28: Step 4: Return Results

29: Output: best barnacle, best fitness, fitness history

Chef-Based Optimization Algorithm (CBOA)

The Chef-Based Optimization Algorithm (CBOA) is an optimization method

inspired by the structured learning process in culinary arts. In CBOA, each

candidate solution represents either a chef instructor or a cooking student, each

playing a different role in reaching the best possible solution.

Algorithm Mechanics CBOA operates through two main phases:

• Chef Instructors’ Phase: Chef instructors refine their skills by observing

the techniques of the top chef (global search) and adding their improvements

(local search). This phase helps balance the exploration of new solutions with

the refinement of existing ones.

• Cooking Students’ Phase: Students learn in three ways—by working

with a chosen chef instructor, picking up a new skill from another chef, and
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practicing independently. This diverse learning approach allows students to

explore various solutions while focusing on improving specific areas.

In CBOA, the positions of chef instructors and cooking students represent

potential solutions. Chef instructors guide the search toward promising areas while

students focus on refining solutions nearby. Together, these roles help the algorithm

balance exploring new options and intensifying efforts around the best solutions

found so far. Through repeated training cycles, CBOA moves closer to finding the

optimal solution (Trojovská and Dehghani [2022]).

Algorithm 3 Chef-Based Optimization Algorithm (CBOA) for Feature Selec-

tion

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a random binary vector of length dimension representing selected

features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each agent i do

7: Perform wrapper model evaluation using cross-validation with XGBoost

(see Equation 5).

8: Store fitness for each agent

9: end for

10: Identify and store the best initial solution (top chef and best fitness)

11: Step 3: Optimization Loop

12: for each iteration in range (1,Max iterations + 1) do

13: Assign agents as ”chef instructors” or ”cooking students” based on fitness

ranking
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14: for each agent i do

15: if agent i is a chef instructor then

16: if random() ¡ 0.5 then

17: Follow top chef to exploit best-known solution

18: else

19: Perform independent exploration with Levy flight

20: end if

21: else ▷ Agent i is a cooking student

22: Select learning strategy randomly:

a) Learn from a random chef instructor

b) Master a specific skill from the top chef

c) Self-improve through Levy flight for exploration

23: end if

24: Evaluate fitness of updated agent

25: if agent’s fitness is better than best fitness then

26: Update best fitness and top chef with current agent

27: end if

28: end for

29: Track best fitness for each iteration in fitness history

30: end for

31: Step 4: Return Results

32: Output: top chef, best fitness, fitness history

Equilibrium Optimizer (EO)

The Equilibrium Optimizer (EO) is a physics-inspired optimization method mod-

elled after mass balance concepts in a control volume. In EO, each candidate
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solution represents a particle with an evolving position based on concentration and

balance principles, aiming to reach an equilibrium state.

Algorithm Mechanics EO operates through three main components:

• Equilibrium Pool and Candidates: EO maintains a pool of top solutions,

representing equilibrium candidates. These candidates guide other particles

by attracting them toward promising areas while retaining some variability

to explore diverse regions.

• Exponential Term (F): This term is calculated based on the turnover rate

(λ), facilitating a dynamic shift between exploration (wide-ranging searches)

and exploitation (focused refinement) as iterations proceed. The term enables

particles to expand their search early on and refine positions in later stages.

• Generation Rate (G): As a local search enhancer, this term directs particles

to adjust their positions around candidates, particularly in smaller steps,

reinforcing the search’s precision as particles near equilibrium.

In EO, particles act as potential solutions, each adjusting its ”concentration”

based on local and global interactions. Through the equilibrium pool and the

balance between F and G terms, EO effectively balances global exploration and

local exploitation. Repeated interactions move EO closer to the global optimum

solution (Faramarzi et al. [2020]).

Algorithm 4 Equilibrium Optimizer (EO) for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, partCount) do
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3: Generate a random binary vector of length dimension representing selected

features

4: end for

5: Initialize the equilibrium pool eqPool with size poolSize, storing the best

solutions found

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Evaluate fitness using cross-validation with XGBoost (see Equation 5)

9: Store fitness for each agent in fitness scores

10: end for

11: Identify the best initial solutions and update eqPool and eqfit (fitness of

equilibrium candidates)

12: Step 3: Optimization Loop

13: for each iteration in range (1,max iter + 1) do

14: for each agent i do

15: Select an equilibrium candidate Ceq from eqPool

16: Generate a random vector λ to guide convergence and diversity

17: Calculate:

a) Concentration Difference term, FVec:

FVec = 2×sign(rand−0.5)×
(
exp(−λ× (1− iteration

max iter
)2·iteration/max iter)− 1

)
b) Generation Rate term, G:

G = 0.5× rand× (Ceq − λ× agent[i])

18: Update agent’s position:

agent[i] = clip(agent[i] + G− FVec× (agent[i]− Ceq), 0, 1)

19: end for
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20: Evaluate fitness for each agent after update and update eqPool with the

best solutions if necessary

21: Track the best fitness values for each iteration in fitness history

22: end for

23: Step 4: Return Results

24: Output: The best agent, best fitness score, and fitness history over iterations

The Exponential Distribution Optimizer (EDO)

The Exponential Distribution Optimizer (EDO) is a mathematics-inspired algorithm

rooted in the principles of the exponential probability distribution. The primary

mechanism of EDO is based on exploiting the statistical properties of exponential

distributions to drive both exploration and exploitation within an optimization

landscape.

Algorithm Mechanics EDO comprises two main phases inspired by exponential

distribution properties:

• Exploitation Phase: This phase is designed around the memoryless property

of exponential distributions. EDO maintains a memoryless matrix where

newly generated solutions are stored regardless of fitness. By disregarding past

performance, EDO allows unsuccessful solutions (losers) to influence future

generations. This phase also incorporates the guiding solution, a composite of

the top-performing solutions, to enhance exploitation near promising areas.

• Exploration Phase: This phase uses the average solution (mean of all

solutions) alongside randomly selected high-performing solutions to drive
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exploration. By adjusting the contribution of each selected solution, EDO

dynamically explores new areas and adjusts for diversity within the search

space.

Through repeated cycles, EDO alternates between these phases, enabling a

balance between exploring new areas and refining promising solutions. A switching

parameter regulates this balance, ensuring the search process remains dynamic.

In EDO, guiding solutions, memoryless storage, and controlled exponential

variance are pivotal, helping the algorithm move toward optimal areas and avoid

getting trapped in local minima Abdel-Basset et al. [2023].

Algorithm 5 Exponential Distribution Optimizer (EDO) for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, N) do

3: Generate a random continuous vector within bounds [LB,UB] for each

dimension, representing selected features

4: end for

5: Set BestSol← 0, BestFitness← −∞, and initialize solution matrix Solutions

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s continuous vector, converting values above

a threshold to 1 (selected) and others to 0

9: Evaluate fitness using cross-validation with XGBoost on the selected features

(refer to Equation 5)

10: Store fitness score in Fitness[i]

11: end for

12: Identify the best initial solution, updating BestSol and BestFitness with the

top fitness and corresponding agent
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13: Step 3: Optimization Loop

14: for each iteration in range (1,Max iter + 1) do

15: for each agent i do

16: Generate a random vector λ to guide the update for each dimension

17: Select a random guiding solution, Cguiding, from the current population

18: Calculate:

a) Concentration Difference term, FVec:

FVec = 2×sign(rand−0.5)×

(
exp(−λ×

(
1− iteration

Max iter

)2·iteration/Max iter

)− 1

)

b) Generation Rate term, G:

G = 0.5× rand× (Cguiding − λ× Solutions[i])

19: Update agent i’s position:

Solutions[i] = clip(Solutions[i] +G−FVec× (Solutions[i]−Cguiding), LB, UB)

20: end for

21: Step 4: Evaluate and Update Fitness

22: for each agent i do

23: Select features from the updated position of agent i (based on thresh-

olding)

24: Recalculate fitness using cross-validation with XGBoost on the selected

features

25: if new fitness of agent i is better than BestFitness then

26: Update BestFitness and BestSol with agent i’s solution and fitness

27: end if

28: end for

29: Record fitness values for each iteration in fitness history
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30: end for

31: Step 5: Return Results

32: Output: The best solution BestSol, best fitness score BestFitness, and statis-

tics such as mean fitness, worst fitness, and feature selection ratio

Energy Valley Optimizer (EVO)

The Energy Valley Optimizer (EVO) is a metaheuristic optimization algorithm

inspired by physical principles surrounding particle stability and decay processes.

In EVO, candidate solutions act as particles, each possessing unique stability char-

acteristics, guiding them toward more stable states within the solution space. This

process involves different decay schemes—alpha, beta, and gamma decay—which

mimic the real-life behaviour of particles moving toward stability (Azizi et al.

[2023]).

Algorithm Mechanics EVO operates through three main phases, mirroring

different particle decay modes:

• Alpha Decay Phase: In this phase, particles emit alpha particles, moving

towards the global best solution by modifying specific attributes. This enables

local search within a neighbourhood of promising solutions.

• Beta Decay Phase: Particles with high instability levels undergo beta decay,

making larger jumps toward the stability band (optimal solution) by moving

closer to both the best solution and a central point, increasing exploration.

• Gamma Decay Phase: Particles experiencing gamma decay adjust their

positions based on neighbouring solutions, facilitating refined adjustments
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for better stability within a localized region.

Algorithm 6 Energy Valley Optimizer (EVO) for Feature Selection

1: Step 1: Initialize Particles

2: for each particle i in range (1,Population Size) do

3: Randomly generate initial positions within bounds for each particle, repre-

senting selected features

4: end for

5: Define Enrichment Bound (EB) based on initial stability levels of particles

6: Step 2: Calculate Initial Stability Levels

7: for each particle i do

8: Select features based on the particle’s position vector, converting values

above a threshold to 1 (selected) and others to 0

9: Evaluate fitness using cross-validation with XGBoost for each particle’s

selected features (see Equation 5)

10: Assign initial stability level based on fitness score

11: end for

12: Determine best and worst stability levels as Best Stability (BS) and

Worst Stability (WS)

13: Step 3: Optimization Loop

14: for each iteration in range (1,Max Iterations) do

15: for each particle i do

16: if Neutron Enrichment Level (NELi > EB) then

17: if Stability Level (SLi > Stability Bound) then

18: Perform Alpha Decay:

Adjust particle’s position by moving it towards BS for local refinement

19: Generate new candidate solution XNewi by applying alpha decay

20: else
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21: Perform Gamma Decay:

Adjust based on neighbouring particles to refine the position

22: Generate new candidate solution XNew2i through gamma decay

23: end if

24: else

25: Perform Beta Decay for more unstable particles:

26: Adjust particle i by moving it towards both BS and the central point

of the population for wider exploration

27: end if

28: end for

29: Evaluate and update stability for each new candidate solution using

XGBoost-based fitness evaluation

30: Update EB based on new stability levels and check stopping criteria

31: end for

32: Step 4: Return Results

33: Output: The particle with the highest stability (best fitness), fitness history

across iterations, and selected features

Genetic Algorithm (GA)

The Genetic Algorithm (GA) is a classic metaheuristic optimization method in-

spired by principles of natural selection and genetics. In GA, candidate solutions,

individuals, form a population that evolves over generations. A fitness function

evaluates each individual, and the fittest individuals are more likely to pass their

traits to the next generation, gradually steering the population toward optimal

solutions (H. et al. [2009], Katoch et al. [2021]).
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Algorithm Mechanics GA operates through three main evolutionary processes:

• Selection: Individuals are selected from the population based on their fitness

scores. Higher fitness increases the likelihood of selection, favouring stronger

solutions. Selection methods include roulette wheel selection, tournament

selection, and rank-based selection.

• Crossover (Recombination): Selected individuals (parents) exchange

parts of their genetic material to produce offspring. This process combines

traits from both parents, allowing the population to explore new areas of the

solution space while inheriting favourable characteristics. Common crossover

methods include single-point, multi-point, and uniform crossover.

• Mutation: Offspring undergo mutation with a low probability, introducing

small, random changes to their genetic material. Mutation maintains genetic

diversity in the population and prevents premature convergence on local

optima. It is typically implemented by flipping bits in a binary representation

or making small numerical changes in real-valued encoding.

In GA, the evolving population undergoes these three processes in each gen-

eration. The algorithm continues until a termination condition is met, such as

reaching a maximum number of generations or achieving a specified fitness level.

Algorithm 7 Genetic Algorithm (GA) for Feature Selection

1: Step 1: Initialize Population

2: for each individual i in range (1,Population Size) do

3: Generate a random binary vector of length num features, representing

selected features

4: end for
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5: Step 2: Calculate Initial Fitness

6: for each individual i do

7: Evaluate fitness using cross-validation with XGBoost

8: Store fitness score for each individual

9: end for

10: Identify the best initial solution and store it as Best Solution with fitness

Best Fitness

11: Step 3: Optimization Loop

12: for each generation in range (1,Max Generations) do

13: Initialize a new population for the next generation

14: for each pair of parents in population do

15: Select two parents using tournament selection

16: if random() ¡ crossover rate then

17: Perform single-point crossover on parents to create two children

18: else

19: Children are identical to parents (no crossover)

20: end if

21: Perform mutation on each child by flipping bits with probability equal

to the mutation rate

22: Add children to the new population

23: end for

24: Replace the current population with the new population

25: Step 4: Calculate Fitness for New Population

26: for each individual i in the new population do

27: Evaluate fitness using cross-validation with XGBoost

28: Store fitness score for each individual

29: end for
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30: Identify the best solution in the new generation

31: if new best solution’s fitness is better than Best Fitness then

32: Update Best Solution and Best Fitness with this new solution

33: end if

34: Track Best Fitness across generations in fitness history

35: end for

36: Step 5: Return Results

37: Output: The best solution (selected features) with the highest fitness score,

fitness history

Golden Ratio Method (GRM)

The Golden Ratio Method (GRM) is an optimization technique inspired by the

golden ratio (ϕ ≈ 1.618), often observed in natural phenomena for efficient search

and refinement. In GRM, candidate solutions represent points in a search space,

and their positions are iteratively adjusted based on the golden ratio to converge

toward optimal solutions.

Algorithm Mechanics GRM operates through the following phases:

• Initialization: A population of candidate solutions is generated randomly

within defined bounds. Each candidate is represented by a binary vector

where each bit indicates whether a feature is selected.

• Golden Ratio-Based Search: Each candidate solution’s position is updated

based on the golden ratio, using two reference points derived from the current

solution and the best-known solution. This approach helps balance exploration

and exploitation by guiding candidates towards promising regions.
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• Fitness Evaluation: Each candidate is evaluated using a fitness function,

such as cross-validated accuracy with a classifier, to determine the quality of

the selected features.

The algorithm iteratively applies these steps until a termination criterion is

met, such as reaching a maximum number of iterations.

Algorithm 8 Golden Ratio Method (GRM) for Feature Selection

1: Step 1: Initialize Population

2: for each candidate solution i in range (1,Population Size) do

3: Generate a random binary vector of length num features, representing

selected features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each candidate solution i do

7: Evaluate fitness using cross-validation with XGBoost for each particle’s

selected features (see Equation 5)

8: Store fitness score for each candidate

9: end for

10: Identify the best initial solution as Best Solution with fitness Best Fitness

11: Step 3: Optimization Loop Using Golden Ratio

12: for each iteration in range (1,Max Iterations) do

13: for each candidate solution i do

14: Generate two new candidate points using the golden ratio ϕ:

New Point 1 = Candidate + ϕ× (Best Solution− Candidate)

New Point 2 = Candidate− ϕ× (Best Solution− Candidate)

15: Clip values in each new point to ensure they remain within bounds

16: Evaluate fitness for New Point 1 and New Point 2
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17: if either new point has a better fitness than the current solution then

18: Update the current solution with the point of having the better

fitness

19: end if

20: end for

21: Update Best Solution and Best Fitness if a better solution is found in this

iteration

22: Track Best Fitness across iterations in fitness history

23: end for

24: Step 4: Return Results

25: Output: The best solution (selected features) with the highest fitness score,

fitness history

Manta Ray Foraging Optimization (MRFO)

The Manta Ray Foraging Optimization (MRFO) is a metaheuristic algorithm

inspired by manta rays’ unique foraging behaviour, which includes coordinated

movements for prey capture. In MRFO, candidate solutions represent individual

manta rays, with each ray’s position in the search space iteratively updated to

explore and exploit potential solutions effectively.

Algorithm Mechanics MRFO operates through three primary foraging mecha-

nisms:

• Chain Foraging: In this phase, manta rays move in a chain-like formation,

where each ray updates its position based on the ray ahead or the current

best solution. This behaviour promotes coordinated exploration across the
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search space.

• Cyclone Foraging: Here, manta rays move in a spiralling pattern towards

the best-known solution, allowing for a more localized search that refines

promising areas of the solution space.

• Somersault Foraging: Manta rays perform a somersault around the best

solution, enhancing exploration and promoting diversity by moving within a

range around the best-known solution.

The algorithm iteratively applies these mechanisms until a stopping criterion is

met, such as reaching a maximum number of iterations or achieving a target fitness

level.

Algorithm 9 Manta Ray Foraging Optimization (MRFO) for Feature Selection

1: Step 1: Initialize Population

2: for each manta ray i in range (1,Population Size) do

3: Generate a random binary vector of length num features, representing

selected features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each manta ray i do

7: Evaluate fitness using cross-validation with XGBoost for each particle’s

selected features (see Equation 5)

8: Store fitness score for each manta ray

9: end for

10: Identify the best initial solution as Best Solution with fitness Best Fitness

11: Step 3: Optimization Loop Using MRFO Mechanisms

12: for each iteration in range (1,Max Iterations) do
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13: Chain Foraging: Each manta ray updates its position based on the

preceding ray or the current best solution

14: for each manta ray i do

15: Update position based on chain movement towards the best solution or

the position of ray i− 1

16: end for

17: Cyclone Foraging: Each manta ray spirals towards the best-known

solution

18: for each manta ray i do

19: Adjust position in a spiral pattern towards the best-known solution

20: end for

21: Somersault Foraging: Each manta ray explores within a radius around

the best solution

22: for each manta ray i do

23: Update position based on somersault foraging around the best solution

24: end for

25: Evaluate fitness for all updated positions

26: Update Best Solution and Best Fitness if a better solution is found in this

iteration

27: Track Best Fitness across iterations in fitness history

28: end for

29: Step 4: Return Results

30: Output: The best solution (selected features) with the highest fitness score,

fitness history
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Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a popular metaheuristic inspired by the

social behaviour of birds flocking or fish schooling. In PSO, candidate solutions

are modelled as particles that ”fly” through the search space, with each particle

adjusting its position based on its personal experience and the collective experience

of the swarm. This algorithm leverages both individual and social learning to

converge toward optimal solutions.

Algorithm Mechanics PSO operates through three main steps:

• Initialization: A population of particles is randomly generated, each with

an associated velocity and position representing a candidate solution.

• Position and Velocity Update: Each particle updates its velocity and

position based on its own best-known position, the best-known position in its

neighbourhood, and its current velocity. This balance allows for a mixture of

exploration and exploitation in the search space.

• Fitness Evaluation: Each particle is evaluated based on a fitness function,

often cross-validated accuracy or another metric, to determine the quality of

the solution represented by its position.

The algorithm iterates these steps until a stopping criterion is met, such as

reaching a maximum number of iterations or achieving a desired fitness level.

Algorithm 10 Particle Swarm Optimization (PSO) for Feature Selection

1: Step 1: Initialize Population
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2: for each particle i in range (1,Population Size) do

3: Randomly generate a binary vector of length num features representing

selected features

4: Initialize velocity for each particle as a vector of the same length

5: Set each particle’s personal best position to its initial position

6: end for

7: Identify the global best position Best Position with fitness Best Fitness from

initial particles

8: Step 2: Optimization Loop

9: for each iteration in range (1,Max Iterations) do

10: for each particle i do

11: Update velocity using personal best, global best, and inertia terms:

velocity[i] = w×velocity[i]+c1×rand()×(personal best[i]−position[i])+c2×rand()×(Best Position−position[i])

12: Update position based on the updated velocity:

position[i] = position[i] + velocity[i]

13: Apply a sigmoid function to ensure binary feature selection, converting

each dimension to 0 or 1

14: Evaluate fitness using cross-validation with XGBoost for each particle’s

selected features (see Equation 5)

15: if updated fitness is better than particle’s personal best fitness then

16: Update particle’s personal best position and fitness

17: end if

18: end for

19: Update global best position Best Position and fitness Best Fitness if a better

solution is found in this iteration

20: Track Best Fitness across iterations in fitness history
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21: end for

22: Step 3: Return Results

23: Output: The best solution (selected features) with the highest fitness score,

fitness history

Walrus Optimization Algorithm (WaOA)

The Walrus Optimization Algorithm (WaOA) is a metaheuristic algorithm inspired

by the social and foraging behaviors of walruses. In WaOA, candidate solutions

represent individual walruses, which adapt their positions in the search space based

on different behaviors, such as feeding, migration, and escaping/fighting. This

structured behavior allows for effective exploration and exploitation to achieve

optimal solutions.

Algorithm Mechanics WaOA operates through three main foraging mecha-

nisms:

• Feeding Phase: Walruses move towards the best-known solution or promis-

ing areas to exploit high-quality solutions. This behavior promotes local

search around successful solutions.

• Migration Phase: Walruses perform broader, random movements to explore

the search space. This movement aims to prevent the algorithm from becoming

trapped in local optima and to promote exploration of new areas.

• Escaping/Fighting Phase: Walruses make smaller, refining movements

around high-quality solutions to balance between exploration and exploitation.
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This helps refine promising solutions by focusing on adjustments within a

local neighborhood.

The algorithm iteratively applies these mechanisms until a stopping criterion is

met, such as reaching a maximum number of iterations or achieving a target fitness

level.

Algorithm 11 Walrus Optimization Algorithm (WaOA) for Feature Selection

1: Step 1: Initialize Population

2: for each walrus i in range (1,Population Size) do

3: Generate a random binary vector of length num features representing se-

lected features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each walrus i do

7: Evaluate fitness using cross-validation with XGBoost for each walrus’s

selected features (see Equation 5)

8: Store fitness score for each walrus

9: end for

10: Identify the best initial solution as Best Solution with fitness Best Fitness

11: Step 3: Optimization Loop Using WaOA Mechanisms

12: for each iteration in range (1,Max Iterations) do

13: for each walrus i do

14: Select a random number Phase Choice to determine the walrus’s behav-

ior

15: if Phase Choice < 0.4 then

16: Feeding Phase: Move walrus towards the best-known solution

17: Update position using movement influenced by Best Solution
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18: else if 0.4 ≤ Phase Choice < 0.7 then

19: Migration Phase: Perform a broad random movement for explo-

ration

20: Update position by moving to a randomly selected walrus within the

population

21: else

22: Escaping/Fighting Phase: Small refining movement around

Best Solution

23: Update position by making a small adjustment around Best Solution

24: end if

25: Ensure updated position remains within bounds and apply binary con-

version to represent selected features

26: Evaluate fitness for the updated position

27: if updated fitness is better than current walrus’s fitness then

28: Update walrus’s position and fitness

29: end if

30: end for

31: Update Best Solution and Best Fitness if a better solution is found in this

iteration

32: Track Best Fitness across iterations in fitness history

33: end for

34: Step 4: Return Results

35: Output: The best solution (selected features) with the highest fitness score,

fitness history

This pseudocode outlines the WaOA as a feature selection algorithm, focusing on

structured phases that help balance exploration and exploitation, with evaluation via

cross-validated XGBoost for accurate fitness assessment. The iterative application
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of these distinct phases promotes robustness in feature selection by leveraging

WaOA’s unique foraging-inspired behaviors.

T o conclude the discussion of standard metaheuristic algorithms, it’s clear

that each algorithm applied different optimization strategies to identify the most

informative feature subsets. By exploring various approaches, these metaheuristics

demonstrated the ability to effectively navigate large, complex search spaces,

balancing exploration and exploitation to support improved wildfire prediction.

However, despite their strengths, conventional metaheuristic methods face several

limitations:

• Escaping Local Optima: Many standard algorithms, while robust, may

struggle to consistently escape local optima in high-dimensional feature spaces,

potentially limiting their effectiveness for complex, interdependent wildfire

data Agrawal et al. [2021] .

• Handling High Dimensionality: As dimensionality increases, the compu-

tational load and convergence challenges also grow, impacting the scalability

and overall performance of these methodsAkinola et al. [2022].

Given these limitations, a specialized approach for feature selection is advanta-

geous. The Liver Cancer Algorithm (LCA) was selected for targeted improvement

due to its adaptability to high-dimensional data and robust search capabilities.

However, LCA has unique challenges, as highlighted in recent studies. Despite its

strengths, the algorithm can exhibit limitations in precise refinement near optimal

solutions, given its reliance on Levy Flight and Random Opposition-Based Learning

(ROBL). These mechanisms, while enhancing exploration and diversity, may lead
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to overshooting and can occasionally slow down convergence near optimal solutions

due to their inherent randomness.

To address these issues, integrating a Spiral Update mechanism into LCA offers

a systematic approach to enhance search precision. The Spiral Update guides the

algorithm around promising solutions in a controlled path, providing more accurate,

fine-tuned adjustments as it nears the optimal solution. This improvement enables

LCA to more effectively balance exploration and exploitation, reducing the tendency

to overshoot while maintaining a steady convergence path. In high-dimensional

contexts such as wildfire prediction, the refined search offered by Spiral Update

increases the precision and stability of the algorithm, positioning it to outperform

conventional methods by reliably converging toward optimal solutions.

Liver Cancer Algorithm (LCA)

The Liver Cancer Algorithm (LCA) is a bio-inspired metaheuristic optimization

algorithm that simulates the progression and mutation patterns observed in liver

cancer cells to explore potential solutions in an optimization search space. In LCA,

candidate solutions act as individual cells, with each cell representing a unique

feature subset. The algorithm iteratively refines these cells, allowing them to

”mutate” and explore different areas of the search space.
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3.4.3 Mathematical Model of LCA

Tumor Growth

The mathematical model of the Liver Cancer Algorithm (LCA) is centered around

simulating the tumor growth and metastasis process. The initial stage involves

calculating the tumor’s size, which is critical for setting up the algorithm’s popula-

tion. This process is modeled by:

Positionj
i =

π

6

(
lengthj · widthj · heightj

)
−
(
lb + (ub− lb)− rd · Positionj

i

)
(3.7)

where Positionj
i represents the estimated volume of the tumor for the i-th agent

in the j-th dimension, lb and ub are the lower and upper bounds of the search

space, respectively, and rd is a random number between 0 and 1 that facilitates

exploration by introducing stochastic variation.

To model the growth of the tumor, the position size is updated dynamically

using:

Position =
π

6
· f · (l · w)3/2 (3.8)

where f = 1 is a constant representing a specific tumor type, and l and w

denote the length and width of the tumor, respectively. This formulation captures

the geometric expansion behavior of the tumor, allowing the algorithm to balance

exploration and exploitation effectively.

The initial size calculation ensures a diverse and well-distributed population,
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enabling the algorithm to adaptively explore the search space during optimization.

Optimization Stages

Following the initial tumor size calculation, the next phase simulates the replication

process observed in malignant tumors. This stage models the tumor’s ability to

duplicate itself in different regions within the liver, reflecting its invasive behavior.

The replication phase relies on the exponential growth model, which is commonly

used to describe cellular division in cancers, including hepatocellular carcinoma.

The tumor growth process is expressed mathematically as:

PGj
i =

dV

dt
= r × Positiont, t ∈ [1 . . . T ], i ∈ [1 . . . N ], (3.9)

where PG represents the tumor growth rate, r denotes the radius of the tumor

modeled as an ellipsoidal shape, and Positiont is derived from the earlier initial-

ization step. The parameters include: - T : Maximum number of iterations, - N :

Population size or number of agents.

Advanced Search Dynamics

To improve exploration and avoid local optima, the replication phase integrates a

Lévy flight-based search mechanism. The random walk process follows:

Lv(D) = 0.01× rand(1, D) · σ
|rand(1, D)|

1
β

, (3.10)

where D is the dimension size, β controls the step distribution, and σ determines

the scale factor. The scale σ is calculated as:

σ =

(
Γ(1 + β) sin

(
πβ
2

)
Γ
(
1+β
2

)
β2

β−1
2

) 1
β

, (3.11)
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where Γ denotes the Gamma function.

Exploration and Decision Mechanism. Based on the growth dynamics, each

tumor evaluates its surroundings and determines its next position through the

following steps:

y = Position+ PG, (3.12)

Z = Y + S × LF (D), (3.13)

where S represents random scaling factors to enhance exploration.

Finally, positions are updated based on fitness evaluations:

Positioni,t+1 =

y, if fit(y) < fit(Positioni),

z, if fit(z) < fit(Positioni),

(3.14)

where fit(·) represents the fitness function used to evaluate solution quality.

In the final stage of the LCA, tumor progression mimics the metastatic behavior

of cancer by applying genetic operators such as mutation and crossover.

Mutation: Mutation introduces diversity by randomly altering components of

the tumor position. The mutation operator is defined as:

yMut =

Position if rand1 ≥ ζ

y else

(3.15)

zMut =

Position if rand2 ≥ ζ

z else

(3.16)

where:
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ζ =
1

T
, y = |Position− Positionj|, z = y − S (3.17)

Crossover: Crossover combines elements from two parents to generate offspring.

The new position after crossover is:

wCross = τ · yMut + (1− τ ′) · zMut, τ ̸= τ ′ (3.18)

Selection: A greedy selection process evaluates the fitness of each position,

retaining the best solutions for the next iteration:

Positioni,t+1 =


yMut if fit(yMut) < fit(Positioni)

zMut if fit(zMut) < fit(Positioni)

wCross if fit(wCross) < fit(Positioni)

(3.19)

The mutation and crossover operations ensure sufficient exploration and exploita-

tion within the search space, enabling the LCA algorithm to converge effectively

towards optimal solutions.

Following the initialization, the LCA simulates tumor replication and spreading

within the host organ, reflecting stages of disease progression. This adaptive search

process is governed by:

Position = 6× f × (ℓ · w)3/2 (3.20)

where f is a constant reflecting specific tumor characteristics, and ℓ and w represent

the evolving dimensions of the tumor within the search space.

82



The replication of the tumor, which signifies a critical phase of disease progres-

sion, is mathematically described by:

dV

dt
= r · Positiont, t ∈ [1, T ], i ∈ [1, N ] (3.21)

where V is the volume of the tumor position, r defines the growth rate, T is the

maximum number of iterations, and N represents the number of search agents.

To effectively simulate the metastatic spread, LCA utilizes Lévy flight dynamics,

enhancing its exploratory capabilities across the problem landscape:

L(D) = 0.01× rand(1, D)× σ (3.22)

σ =

(
Γ(1 + β)× sin(πβ/2)

Γ((1 + β)/2)× β × 2(β−1)/2

)1/β

(3.23)

These equations govern the stochastic and strategic dispersal of search agents,

mimicking the unpredictable and aggressive spread of liver cancer cells across the

liver landscape, optimizing the algorithm’s capability to locate and refine the best

solutions for complex optimization problems.

3.4.4 Algorithm Mechanics

The Liver Cancer Algorithm (LCA) employs mutation-based processes inspired by

tumor growth, replication, and metastasis to perform optimization. Its mechanics

are as follows:

• Primary Mutation: This process introduces random changes in the position

of candidate solutions, simulating the unpredictable growth of tumors. It

promotes diversity within the population, ensuring broad exploration of the

search space to avoid premature convergence.
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• Opposition-Based Mutation: Inspired by opposition-based learning

(ROBL), this mechanism generates complementary solutions by reflecting

positions across their opposite values within the search bounds. This process

expands the search area, allowing the algorithm to escape local optima

and improve solution diversity.

• Crossover Mutation: Borrowing principles from genetic algorithms, LCA

combines features of high-fitness solutions (parents) to produce offspring with

enhanced traits. This crossover mechanism allows exploitation of promising

areas while retaining diversity in the population.

The algorithm iteratively applies these mutation processes until a termination

criterion, such as the maximum number of iterations, is met.
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Algorithm 12 Liver Cancer Algorithm (LCA) for Feature Selection

1: Step 1: Initialization

2: Initialize population size N and maximum iterations T

3: for each agent i in range (1, N) do

4: Generate random positions Positioni using Eq. (3.7)

5: end for

6: Step 2: Fitness Evaluation

7: for each agent i do

8: Evaluate fitness using cross-validation (e.g., XGBoost) for selected features

9: Store fitness scores and identify Best Position and Best Fitness

10: end for

11: Step 3: Iterative Optimization Process

12: for each iteration t in range (1, T ) do

13: for each agent i do

14: Compute fitness for current position

15: if Position < 0.8 or Position > 0.8 then ▷ Exploitation Phase

16: Update tumor position using Eq. (3.20)

17: else if 0.8 < Position < 1.96 then ▷ Replication Phase

18: Update position using Eq. (3.20) (Exponential Growth)

19: else ▷ Exploration Phase

20: Apply mutation using Eq. (3.15) and Eq. (3.16)

21: Apply crossover using Eq. (3.18)

22: Evaluate new positions using fitness and select the best

23: end if

24: end for

25: Step 4: Update Population and Best Fitness

26: Compare updated fitness values with Best Fitness

27: if new fitness improves then

28: Update Best Position and Best Fitness

29: end if

30: end for

31: Step 5: Output Results

32: Return Best Position and Best Fitness
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Manta Ray Foraging Optimization (MRFO)

The Manta Ray Foraging Optimization (MRFO) is a metaheuristic algorithm

inspired by manta rays’ unique foraging behaviour, which includes coordinated

movements for prey capture. In MRFO, candidate solutions represent individual

manta rays, with each ray’s position in the search space iteratively updated to

explore and exploit potential solutions effectively.

Algorithm Mechanics MRFO operates through three primary foraging mecha-

nisms:

• Chain Foraging: In this phase, manta rays move in a chain-like formation,

where each ray updates its position based on the ray ahead or the current

best solution. This behaviour promotes coordinated exploration across the

search space.

• Cyclone Foraging: Here, manta rays move in a spiralling pattern towards

the best-known solution, allowing for a more localized search that refines

promising areas of the solution space.

• Somersault Foraging: Manta rays perform a somersault around the best

solution, enhancing exploration and promoting diversity by moving within a

range around the best-known solution.

The algorithm iteratively applies these mechanisms until a stopping criterion is

met, such as reaching a maximum number of iterations or achieving a target fitness

level.
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Algorithm 13 Manta Ray Foraging Optimization (MRFO) for Feature Selec-

tion

1: Step 1: Initialize Population

2: for each manta ray i in range (1,Population Size) do

3: Generate a random binary vector of length num features, representing

selected features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each manta ray i do

7: Evaluate fitness using cross-validation with XGBoost for each particle’s

selected features (see Equation 5)

8: Store fitness score for each manta ray

9: end for

10: Identify the best initial solution as Best Solution with fitness Best Fitness

11: Step 3: Optimization Loop Using MRFO Mechanisms

12: for each iteration in range (1,Max Iterations) do

13: Chain Foraging: Each manta ray updates its position based on the

preceding ray or the current best solution

14: for each manta ray i do

15: Update position based on chain movement towards the best solution or

the position of ray i− 1

16: end for

17: Cyclone Foraging: Each manta ray spirals towards the best-known

solution

18: for each manta ray i do

19: Adjust position in a spiral pattern towards the best-known solution

20: end for
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21: Somersault Foraging: Each manta ray explores within a radius around

the best solution

22: for each manta ray i do

23: Update position based on somersault foraging around the best solution

24: end for

25: Evaluate fitness for all updated positions

26: Update Best Solution and Best Fitness if a better solution is found in this

iteration

27: Track Best Fitness across iterations in fitness history

28: end for

29: Step 4: Return Results

30: Output: The best solution (selected features) with the highest fitness score,

fitness history

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a popular metaheuristic inspired by the

social behaviour of birds flocking or fish schooling. In PSO, candidate solutions

are modelled as particles that ”fly” through the search space, with each particle

adjusting its position based on its personal experience and the collective experience

of the swarm. This algorithm leverages both individual and social learning to

converge toward optimal solutions.

Algorithm Mechanics PSO operates through three main steps:

• Initialization: A population of particles is randomly generated, each with

an associated velocity and position representing a candidate solution.
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• Position and Velocity Update: Each particle updates its velocity and

position based on its own best-known position, the best-known position in its

neighbourhood, and its current velocity. This balance allows for a mixture of

exploration and exploitation in the search space.

• Fitness Evaluation: Each particle is evaluated based on a fitness function,

often cross-validated accuracy or another metric, to determine the quality of

the solution represented by its position.

The algorithm iterates these steps until a stopping criterion is met, such as

reaching a maximum number of iterations or achieving a desired fitness level.

Algorithm 14 Particle Swarm Optimization (PSO) for Feature Selection

1: Step 1: Initialize Population

2: for each particle i in range (1,Population Size) do

3: Randomly generate a binary vector of length num features representing

selected features

4: Initialize velocity for each particle as a vector of the same length

5: Set each particle’s personal best position to its initial position

6: end for

7: Identify the global best position Best Position with fitness Best Fitness from

initial particles

8: Step 2: Optimization Loop

9: for each iteration in range (1,Max Iterations) do

10: for each particle i do

11: Update velocity using personal best, global best, and inertia terms:

velocity[i] = w×velocity[i]+c1×rand()×(personal best[i]−position[i])+c2×rand()×(Best Position−position[i])
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12: Update position based on the updated velocity:

position[i] = position[i] + velocity[i]

13: Apply a sigmoid function to ensure binary feature selection, converting

each dimension to 0 or 1

14: Evaluate fitness using cross-validation with XGBoost for each particle’s

selected features (see Equation 5)

15: if updated fitness is better than particle’s personal best fitness then

16: Update particle’s personal best position and fitness

17: end if

18: end for

19: Update global best position Best Position and fitness Best Fitness if a better

solution is found in this iteration

20: Track Best Fitness across iterations in fitness history

21: end for

22: Step 3: Return Results

23: Output: The best solution (selected features) with the highest fitness score,

fitness history

Walrus Optimization Algorithm (WaOA)

The Walrus Optimization Algorithm (WaOA) is a metaheuristic algorithm inspired

by the social and foraging behaviors of walruses. In WaOA, candidate solutions

represent individual walruses, which adapt their positions in the search space based

on different behaviors, such as feeding, migration, and escaping/fighting. This

structured behavior allows for effective exploration and exploitation to achieve

optimal solutions.
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Algorithm Mechanics WaOA operates through three main foraging mecha-

nisms:

• Feeding Phase: Walruses move towards the best-known solution or promis-

ing areas to exploit high-quality solutions. This behavior promotes local

search around successful solutions.

• Migration Phase: Walruses perform broader, random movements to explore

the search space. This movement aims to prevent the algorithm from becoming

trapped in local optima and to promote exploration of new areas.

• Escaping/Fighting Phase: Walruses make smaller, refining movements

around high-quality solutions to balance between exploration and exploitation.

This helps refine promising solutions by focusing on adjustments within a

local neighborhood.

The algorithm iteratively applies these mechanisms until a stopping criterion is

met, such as reaching a maximum number of iterations or achieving a target fitness

level.

Algorithm 15 Walrus Optimization Algorithm (WaOA) for Feature Selection

1: Step 1: Initialize Population

2: for each walrus i in range (1,Population Size) do

3: Generate a random binary vector of length num features representing se-

lected features

4: end for

5: Step 2: Calculate Initial Fitness

6: for each walrus i do
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7: Evaluate fitness using cross-validation with XGBoost for each walrus’s

selected features (see Equation 5)

8: Store fitness score for each walrus

9: end for

10: Identify the best initial solution as Best Solution with fitness Best Fitness

11: Step 3: Optimization Loop Using WaOA Mechanisms

12: for each iteration in range (1,Max Iterations) do

13: for each walrus i do

14: Select a random number Phase Choice to determine the walrus’s behav-

ior

15: if Phase Choice < 0.4 then

16: Feeding Phase: Move walrus towards the best-known solution

17: Update position using movement influenced by Best Solution

18: else if 0.4 ≤ Phase Choice < 0.7 then

19: Migration Phase: Perform a broad random movement for explo-

ration

20: Update position by moving to a randomly selected walrus within the

population

21: else

22: Escaping/Fighting Phase: Small refining movement around

Best Solution

23: Update position by making a small adjustment around Best Solution

24: end if

25: Ensure updated position remains within bounds and apply binary con-

version to represent selected features

26: Evaluate fitness for the updated position

27: if updated fitness is better than current walrus’s fitness then
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28: Update walrus’s position and fitness

29: end if

30: end for

31: Update Best Solution and Best Fitness if a better solution is found in this

iteration

32: Track Best Fitness across iterations in fitness history

33: end for

34: Step 4: Return Results

35: Output: The best solution (selected features) with the highest fitness score,

fitness history

This pseudocode outlines the WaOA as a feature selection algorithm, focusing on

structured phases that help balance exploration and exploitation, with evaluation via

cross-validated XGBoost for accurate fitness assessment. The iterative application

of these distinct phases promotes robustness in feature selection by leveraging

WaOA’s unique foraging-inspired behaviors.

T o conclude the discussion of standard metaheuristic algorithms, it’s clear

that each algorithm applied different optimization strategies to identify the most

informative feature subsets. By exploring various approaches, these metaheuristics

demonstrated the ability to effectively navigate large, complex search spaces,

balancing exploration and exploitation to support improved wildfire prediction.

However, despite their strengths, conventional metaheuristic methods face several

limitations:

• Escaping Local Optima: Many standard algorithms, while robust, may

struggle to consistently escape local optima in high-dimensional feature spaces,
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potentially limiting their effectiveness for complex, interdependent wildfire

data Agrawal et al. [2021] .

• Handling High Dimensionality: As dimensionality increases, the compu-

tational load and convergence challenges also grow, impacting the scalability

and overall performance of these methodsAkinola et al. [2022].

Given these limitations, a specialized approach for feature selection is advanta-

geous. The Liver Cancer Algorithm (LCA) was selected for targeted improvement

due to its adaptability to high-dimensional data and robust search capabilities.

However, LCA has unique challenges, as highlighted in recent studies. Despite its

strengths, the algorithm can exhibit limitations in precise refinement near optimal

solutions, given its reliance on Levy Flight and Random Opposition-Based Learning

(ROBL). These mechanisms, while enhancing exploration and diversity, may lead

to overshooting and can occasionally slow down convergence near optimal solutions

due to their inherent randomness.

To address these issues, integrating a Spiral Update mechanism into LCA offers

a systematic approach to enhance search precision. The Spiral Update guides the

algorithm around promising solutions in a controlled path, providing more accurate,

fine-tuned adjustments as it nears the optimal solution. This improvement enables

LCA to more effectively balance exploration and exploitation, reducing the tendency

to overshoot while maintaining a steady convergence path. In high-dimensional

contexts such as wildfire prediction, the refined search offered by Spiral Update

increases the precision and stability of the algorithm, positioning it to outperform

conventional methods by reliably converging toward optimal solutions.

Given these limitations, a specialized approach for feature selection is advanta-

geous. The Liver Cancer Algorithm (LCA) was selected for targeted improvement
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due to its adaptability to high-dimensional data and robust search capabilities.

However, LCA has unique challenges, as highlighted in recent studies. Despite its

strengths, the algorithm can exhibit limitations in precise refinement near optimal

solutions, given its reliance on Levy Flight and Random Opposition-Based Learning

(ROBL). These mechanisms, while enhancing exploration and diversity, may lead

to overshooting and can occasionally slow down convergence near optimal solutions

due to their inherent randomness.

To address these issues, integrating a Spiral Update mechanism into LCA offers

a systematic approach to enhance search precision. The Spiral Update guides the

algorithm around promising solutions in a controlled path, providing more accurate,

fine-tuned adjustments as it nears the optimal solution. This improvement enables

LCA to more effectively balance exploration and exploitation, reducing the tendency

to overshoot while maintaining a steady convergence path. In high-dimensional

contexts such as wildfire prediction, the refined search offered by Spiral Update

increases the precision and stability of the algorithm, positioning it to outperform

conventional methods by reliably converging toward optimal solutions.

3.5 Proposed Algorithm

3.5.1 Spiral Implementation

Spiral structures generally appear in forms such as galaxies, hurricanes, seashells,

and plant growth patterns. A consistent yet dynamic progression marks these

natural phenomena, inspiring optimization techniques that mimic their structured

navigation through complex environments. The convergent nature of spirals,
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coupled with their orderly expansion, makes them highly effective in optimization.

They offer a path that balances thorough search space exploration with a steady

movement towards optimal solutions (Omar et al. [2022], Tamura and Yasuda

[2011]).

The spiral’s rotating and inward-curving trajectory enables smooth transitions

toward high-potential areas without the abrupt jumps often seen in random explo-

ration methods Polezhaev [2019]. This structured progression supports controlled

convergence, particularly in high-dimensional and complex search spaces. Specifi-

cally, spiral dynamics provides the following advantages in optimization:

• Improved Search Precision: The gradual approach of the spiral path

allows algorithms to fine-tune adjustments as they get closer to the optimal

solution. This precise control helps reduce the risk of overshooting high-

potential regions, addressing a common limitation in methods such as Levy

flights.

• Enhanced Exploration and Exploitation Balance: Through systematic

rotation throughout the search space, spiral dynamics strike a balance between

exploring new regions and exploiting promising ones. This balanced approach

is essential in optimization, preventing premature convergence and ensuring

a comprehensive search space exploration.

• Adaptability to Boundaries: Spiral paths can be adjusted to remain

within defined boundaries, making them particularly suitable for constrained

optimization tasks. This flexibility allows the spiral dynamics to operate

effectively in diverse problems where boundary conditions must be respected.

In optimization, the spiral dynamic’s predictable yet flexible path offers substan-
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tial benefits for navigating high-dimensional spaces with complex interdependencies.

For algorithms such as the Liver Cancer Algorithm (LCA), integrating a Spiral

Update mechanism introduces a systematic search pattern that enhances precision

in convergence. This enhancement is especially valuable in complex domains such

as wildfire prediction, where efficient exploration and accurate targeting of high-

impact feature subsets are critical to improve predictive performance.

Parameter Definitions

To formalize the implementation of various spiral types, the following parameters

are consistently used throughout their mathematical representations:

• a: A scaling constant determining the spiral’s initial size or growth rate.

• b: A constant controlling the spacing or rate of growth between successive

loops of the spiral.

• φ: The polar angle, measured in radians, represents the rotational component

of the spiral.

• θ: The angular increment, a step size determining the resolution of the spiral

path.

• r: The radius or distance from the origin to a point on the spiral.

• v: A constant velocity used in some formulations to integrate linear motion

with rotational dynamics.

• ω: The angular velocity defines the rate at which the spiral rotates about

the origin.
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These parameters are adapted for each specific spiral type to achieve tailored

exploration and exploitation dynamics.

We utilized several spiral path types to implement the Spiral Update in the

Liver Cancer Algorithm (LCA), each tailored to different optimization strategies.

By incorporating these specific spiral dynamics into the LCA, we developed a more

refined approach to feature selection, particularly well-suited for high-dimensional

and interdependent datasets. Below, we outline each spiral type, its mathematical

formulation, and its unique contributions to enhancing the LCA’s performance.

The Archimedean Spiral

• Archimedean Spiral: The Archimedean spiral, named after the Greek

mathematician Archimedes, describes a path in which a point moves outward

from a fixed origin at a constant speed while rotating with a constant angular

velocity. This type of spiral can be mathematically represented in polar

coordinates by the formula:

r = b · θ (3.24)

where r is the radius (distance from the origin), θ is the angle, and b is a

constant controlling the spacing between loops. A higher value of b increases

the distance between successive spiral turns.

The Archimedean spiral is beneficial in optimization, especially for sys-

tematically exploring search spaces. Because the radial distance r grows

proportionally with θ, the spiral expands evenly from the origin. This steady

spacing enables controlled and incremental searches, avoiding large jumps

and ensuring consistent coverage across the search space.
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Derivation of the Archimedean Spiral Formula To derive this formula,

consider a point moving at constant velocity v along the x-axis in Cartesian

coordinates. If the xy-plane rotates around the z-axis with a constant angular

velocity ω, then the position of the point at any time t is given by:

x = (vt+ c) cos(ωt) and y = (vt+ c) sin(ωt) (3.25)

where c is an initial radial offset. This formulation integrates linear motion

with rotational movement, creating a spiral path over time. In polar coordi-

nates, this can be expressed as:

r =
v

ω
· θ + c (3.26)

Key Characteristics

– Constant Separation Distance: Each loop of the Archimedean spiral

is separated by a constant distance along any ray from the origin. For θ

measured in radians, this spacing is 2πb.

– Uniform Expansion: For large θ, movement along the spiral approxi-

mates uniform acceleration, providing a stable path ideal for controlled,

predictable searches.

– Symmetry: The Archimedean spiral is symmetrical, with two mirrored

arms—one for θ > 0 and one for θ < 0—supporting balanced search

patterns.

Algorithm 16 Liver Cancer Algorithm (LCA) with Archimedean Spiral Up-

date.
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Figure 3.2: Visualization of the Archimedean Spiral

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]

11: end for

12: Identify the best initial solution, updating best score and best features
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13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do

16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position

17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: **Archimedean Spiral Update**: With probability 0.5, apply

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Compute the direction vector direction = best agent−X[i]

24: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥

25: if norm = 0 then

26: Set norm = 1 to avoid division by zero

27: end if

28: Normalize the direction vector:

unit direction =
direction

norm

29: Set the angular increment θ (e.g., θ = 0.1)

30: Calculate the spiral step size based on constant b:

step = b · θ · unit direction

31: Update agent’s position in the direction of the spiral step:

new position = X[i] + step
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32: Convert updated position to binary by setting values above 0.5 to 1

and others to 0:

X[i] = (new position > 0.5)

33: end if

34: Crossover and Mutation:

35: Select a partner agent at random

36: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])

37: Apply mutation to the child:

mutated child← mutation(child,mutation rate)

38: Calculate the fitness of the mutated child

39: if mutated child fitness ¿ current agent fitness then

40: Replace the current agent with the mutated child

41: end if

42: end for

43: Update Best Solution:

44: if Current best fitness is greater than previous best then

45: Update best score and best features

46: end if

47: end for

48: Step 4: Return Results

49: Output: The best solution best features, best fitness score best score, and

fitness history over iterations
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The Euler Spiral

• Euler Spiral: The Euler spiral, also known as the Clothoid or Cornu spiral,

is defined by a variable curvature that increases linearly with the arc length.

As the spiral progresses, its curvature continuously changes, allowing for

smooth transitions in direction Levien [2008], Seggern [1994], Cherchi et al.

[2013]. In polar coordinates, the Euler spiral does not have a straightforward

formula like the Archimedean spiral but can be described parametrically

using Fresnel integrals:

x(t) = C(t) =

∫ t

0

cos

(
π u2

2

)
du (3.27)

y(t) = S(t) =

∫ t

0

sin

(
π u2

2

)
du (3.28)

where C(t) and S(t) are the Fresnel integrals, which describe the coordinates

of the point on the spiral.

The Euler spiral is handy for optimizing smooth exploration. Its linearly

changing curvature provides a gradual transition in direction, preventing

abrupt movements. This helps navigate complex search spaces while main-

taining a controlled exploration path.

Key Characteristics

– Smooth Curvature Transition: The Euler spiral’s curvature varies

linearly, allowing the search process to transition through potential

solutions without abrupt changes smoothly.
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– Controlled Expansion: As the curvature gradually increases, the

spiral expands smoothly, ensuring the algorithm does not jump too

rapidly between points.

– Balanced Exploration and Exploitation: The continuous curvature

adjustment allows for a natural balance between exploration (diverging

outward) and exploitation (converging inward), making it suitable for

high-dimensional spaces.

Algorithm 17 Liver Cancer Algorithm (LCA) with Detailed Euler Spiral Up-

date for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]

11: end for

12: Identify the best initial solution, updating best score and best features

13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do

16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position
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17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: Euler Spiral Update: With probability 0.5, apply Euler spiral update

towards the best agent

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Detailed Logic of Euler Spiral Update:

24: Compute the direction vector direction = best agent−X[i]

25: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥

26: if norm = 0 then

27: Set norm = 1 to avoid division by zero

28: end if

29: Normalize the direction vector:

unit direction =
direction

norm

30: Set the initial curvature and curvature increment:

curvature = curvature start + curvature increment · norm

31: Calculate the Euler spiral step based on the curvature:

step = step size · curvature · unit direction

32: Update agent’s position in the direction of the Euler spiral step:

new position = X[i] + step
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33: Apply dynamic thresholding to convert the position to binary:

X[i] = (new position > dynamic threshold(t,Max iterations)).astype(int)

34: end if

35: Crossover and Mutation:

36: Select a partner agent at random

37: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])

38: Apply mutation to the child:

mutated child← mutation(child,mutation rate)

39: Calculate the fitness of the mutated child

40: if mutated child fitness ¿ current agent fitness then

41: Replace the current agent with the mutated child

42: end if

43: end for

44: Update Best Solution:

45: if Current best fitness is greater than previous best then

46: Update best score and best features

47: end if

48: end for

49: Step 4: Return Results

50: Output: The best solution best features, best fitness score best score, and

fitness history over iterations
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Figure 3.3: Visualization of the Euler Spiral

The Fermat Spiral

• Fermat Spiral: The Fermat spiral, or parabolic spiral, is characterized by the

property that the area between consecutive turns remains constant while the

distance between turns grows proportionally with the square root of the angle

from the center. Unlike the Archimedean spiral, which maintains constant

spacing, the Fermat spiral expands outward slower, making it suitable for

controlled exploration with a gradual increase in search radius.

In polar coordinates, the Fermat spiral can be represented as:

r = ±a√φ (3.29)

where r is the radius (distance from the origin), φ is the angle, and a

is a constant that controls the growth rate. The two signs produce two

symmetrical arms of the spiral, both converging at the origin.
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The Fermat spiral’s unique property of spacing growth makes it particularly

effective in feature selection tasks for wildfire prediction. It allows for a

structured, outward exploration. By gradually expanding the search radius,

the Fermat spiral provides comprehensive coverage of the feature space,

reducing the likelihood of missing important feature subsets.

Key Characteristics

– Constant Area between Turns: The Fermat spiral maintains a

constant area between each pair of successive loops, supporting even

exploration throughout the search space.

– Gradual Expansion: The distance between loops increases propor-

tionally with
√
φ, allowing for controlled expansion that is particularly

beneficial in high-dimensional search spaces.

– Symmetry: The two symmetrical branches of the Fermat spiral provide

balanced coverage, supporting consistent exploration across the search

space.

Algorithm 18 Liver Cancer Algorithm (LCA) with Detailed Fermat Spiral

Update for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

108



8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]

11: end for

12: Identify the best initial solution, updating best score and best features

13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do

16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position

17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: Fermat Spiral Update: With probability 0.5, apply Fermat spiral

update towards the best agent

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Detailed Logic of Fermat Spiral Update:

24: Compute the direction vector direction = best agent−X[i]

25: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥

26: if norm = 0 then

27: Set norm = 1 to avoid division by zero

28: end if

29: Normalize the direction vector:

unit direction =
direction

norm
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30: Set the angle increment φ and calculate the Fermat spiral step size:

step = a · √φ · unit direction

31: Update agent’s position in the direction of the Fermat spiral step:

new position = X[i] + step

32: Convert updated position to binary based on a dynamic threshold:

X[i] = (new position > dynamic threshold(t,Max iterations)).astype(int)

33: end if

34: Crossover and Mutation:

35: Select a partner agent at random

36: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])

37: Apply mutation to the child:

mutated child← mutation(child,mutation rate)

38: Calculate the fitness of the mutated child

39: if mutated child fitness ¿ current agent fitness then

40: Replace the current agent with the mutated child

41: end if

42: end for

43: Update Best Solution:

44: if Current best fitness is greater than previous best then

45: Update best score and best features

46: end if
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47: end for

48: Step 4: Return Results

49: Output: The best solution best features, best fitness score best score, and

fitness history over iterations

Figure 3.4: Visualization of the Fermat Spiral

The Golden Spiral

• Golden Spiral: The Golden spiral is a specific logarithmic spiral where

the radius grows by a factor of the golden ratio φ ≈ 1.618 for every quarter

turn. This unique property of expansion enables a consistent scaling as the

spiral moves outward, with each quarter turn moving further away from the
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origin by a constant proportion. The Golden spiral is especially suitable for

optimization tasks requiring smooth, proportional search space exploration.

In polar coordinates, the Golden spiral is represented by:

r = aebθ (3.30)

where r is the radius, θ is the angle, a is the initial radius, and b is the growth

rate determined by the golden ratio, given by b = lnφ
π/2

.

In the context of feature selection for wildfire prediction, the Golden Spiral’s

proportional and smooth expansion systematically explores the feature space.

This exploration ensures that the search process does not overlook critical

regions, enhancing the likelihood of identifying optimal feature subsets that

improve predictive performance.

Key Characteristics

– Proportional Growth: Each quarter turn increases the radius by a

factor of φ, supporting systematic exploration across varying scales in

the search space.

– Smooth Expansion: The Golden spiral grows outward smoothly, which

is advantageous for controlled expansion in high-dimensional feature

selection tasks.

– Self-Similarity: The self-similar nature of the Golden spiral supports

consistent coverage across the search space, balancing both global explo-

ration and local exploitation.

Algorithm 19 Liver Cancer Algorithm (LCA) with Detailed Golden Spiral

Update for Feature Selection
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1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]

11: end for

12: Identify the best initial solution, updating best score and best features

13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do

16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position

17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: Golden Spiral Update: With probability 0.5, apply Golden spiral

update towards the best agent

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Detailed Logic of Golden Spiral Update:

24: Compute the direction vector direction = best agent−X[i]
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25: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥

26: if norm = 0 then

27: Set norm = 1 to avoid division by zero

28: end if

29: Normalize the direction vector:

unit direction =
direction

norm

30: Set the angular increment θ and calculate the Golden spiral step size

using:

step = aebθ · unit direction

31: Update agent’s position in the direction of the Golden spiral step:

new position = X[i] + step

32: Convert updated position to binary based on a dynamic threshold:

X[i] = (new position > dynamic threshold(t,Max iterations)).astype(int)

33: end if

34: Crossover and Mutation:

35: Select a partner agent at random

36: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])

37: Apply mutation to the child:

mutated child← mutation(child,mutation rate)
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38: Calculate the fitness of the mutated child

39: if mutated child fitness ¿ current agent fitness then

40: Replace the current agent with the mutated child

41: end if

42: end for

43: Update Best Solution:

44: if Current best fitness is greater than previous best then

45: Update best score and best features

46: end if

47: end for

48: Step 4: Return Results

49: Output: The best solution best features, best fitness score best score, and

fitness history over iterations

The Hyperbolic Spiral

• Hyperbolic Spiral: The hyperbolic spiral, also called the reciprocal spiral,

is defined by a unique property where its radius decreases inversely with the

angle. This creates a curve that approaches an asymptotic line as it extends,

with a pitch angle that increases with distance from the origin. Unlike

logarithmic or Archimedean spirals, the hyperbolic spiral’s shape supports

a decelerated outward exploration, which is particularly advantageous in

controlled optimization tasks Bowser [1910], Øyvind Hammer [2016].

In polar coordinates, the hyperbolic spiral is represented by:

r =
a

φ
(3.31)
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Figure 3.5: Visualization of the Golden Spiral

where r is the radius, φ is the angle, and a is a scale factor that controls the

spread of the spiral. The inverse relationship between r and φ ensures that

the spiral gradually widens while approaching an asymptotic line.

In the context of feature selection for wildfire prediction, the hyperbolic

spiral’s controlled expansion allows for a targeted exploration of the feature

space. This expansion ensures the search progresses systematically without

excessive jumps, improving the likelihood of identifying critical features for

model accuracy.

Key Characteristics

– Increasing Pitch Angle: The hyperbolic spiral’s pitch angle increases
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with distance from the origin, supporting a decelerated yet comprehensive

search space exploration.

– Asymptotic Approach: As the spiral expands, it approaches an

asymptotic line, which limits extreme divergence and enables focused

exploration.

– Inverse Proportionality: The inverse relationship between radius and

angle allows the hyperbolic spiral to provide a balanced yet methodical

expansion, making it suitable for optimization scenarios requiring gradual

coverage.

Algorithm 20 Liver Cancer Algorithm (LCA) with Hyperbolic Spiral Update

for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]

11: end for

12: Identify the best initial solution, updating best score and best features

13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do
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16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position

17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: Hyperbolic Spiral Update: With probability 0.5, apply hyperbolic

spiral update towards the best agent

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Detailed Logic of Hyperbolic Spiral Update:

24: Compute the direction vector direction = best agent−X[i]

25: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥

26: if norm = 0 then

27: Set norm = 1 to avoid division by zero

28: end if

29: Normalize the direction vector:

unit direction =
direction

norm

30: Set the angle increment φ and calculate the hyperbolic spiral step

size using:

step =
a

φ
· unit direction

31: Update agent’s position in the direction of the hyperbolic spiral step:

new position = X[i] + step

32: Convert updated position to binary based on a dynamic threshold:

X[i] = (new position > dynamic threshold(t,Max iterations)).astype(int)
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33: end if

34: Crossover and Mutation:

35: Select a partner agent at random

36: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])

37: Apply mutation to the child:

mutated child← mutation(child,mutation rate)

38: Calculate the fitness of the mutated child

39: if mutated child fitness ¿ current agent fitness then

40: Replace the current agent with the mutated child

41: end if

42: end for

43: Update Best Solution:

44: if Current best fitness is greater than previous best then

45: Update best score and best features

46: end if

47: end for

48: Step 4: Return Results

49: Output: The best solution best features, best fitness score best score, and

fitness history over iterations

The Lituus Spiral

• Lituus Spiral: The Lituus spiral is an algebraic spiral characterized by an

inverse square root relationship between the radius and the angle. This spiral
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Figure 3.6: Visualization of the Hyperbolic Spiral

type is named after an ancient Roman trumpet called the ”lituus,” which

Roger Cotes studied in 1722. The Lituus spiral has two symmetric branches,

each approaching infinity asymptotically and winding towards the origin. The

size of the spiral is controlled by the constant a, and each branch features

an inflection point, creating a unique curvature pattern as it approaches the

origin.

In polar coordinates, the Lituus spiral is represented by:

ρ =
a
√
φ

(3.32)

where ρ is the radius, φ is the angle in radians, and a is a constant that

affects the scale of the spiral.
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The Lituus spiral is advantageous for exploration tasks requiring controlled,

inward-reaching searches. Its inverse relationship with the angle enables a

targeted approach, which is particularly useful for gradually narrowing down

a search area.

Key Characteristics

– Inverse Square Root Relationship: The radius is inversely propor-

tional to the square root of the angle, resulting in a spiral that tightens

near the origin.

– Symmetric Branches: Each branch is centrally symmetric around the

origin, providing balanced coverage.

– Inflection Points: The spiral features inflection points at (φ, ρ) =(
±1

2
,
√
2a
)
, where the curvature changes direction.

Algorithm 21 Liver Cancer Algorithm (LCA) with Detailed Lituus Spiral Up-

date for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do

3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]
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Figure 3.7: Visualization of the Lituus Spiral

11: end for

12: Identify the best initial solution, updating best score and best features

13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do

16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position

17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: Lituus Spiral Update: With probability 0.5, apply the Lituus spiral
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update towards the best agent

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Compute the direction vector direction = best agent−X[i]

24: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥

25: if norm = 0 then

26: Set norm = 1 to avoid division by zero

27: end if

28: Normalize the direction vector:

unit direction =
direction

norm

29: Set the angle φ and calculate the Lituus spiral step size using:

step =
a
√
φ
· unit direction

30: Update agent’s position in the direction of the Lituus spiral step:

new position = X[i] + step

31: Convert updated position to binary based on a dynamic threshold:

X[i] = (new position > 0.5).astype(int)

32: end if

33: Crossover and Mutation:

34: Select a partner agent at random

35: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])
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36: Apply mutation to the child:

mutated child← mutation(child,mutation rate)

37: Calculate the fitness of the mutated child

38: if mutated child fitness ¿ current agent fitness then

39: Replace the current agent with the mutated child

40: end if

41: end for

42: Update Best Solution:

43: if Current best fitness is greater than previous best then

44: Update best score and best features

45: end if

46: end for

47: Step 4: Return Results

48: Output: The best solution best features, best fitness score best score, and

fitness history over iterations

The Logarithmic Spiral

• Logarithmic Spiral: The logarithmic spiral, also known as the equiangular

or growth spiral, is a unique self-similar spiral where the distance between

successive turns increases geometrically. This distinctive property results in

a consistent or pitch angle between the spiral and any radial line, creating

a curve that appears frequently in natural phenomena, such as shells and

galaxies. Jacob Bernoulli, who extensively studied this spiral, famously called

it Spira mirabilis, or ”the marvellous spiral,” due to its aesthetic appeal and

mathematical properties.
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In polar coordinates, the logarithmic spiral is represented by:

r = aekφ (3.33)

where r is the radius, φ is the angle, a is a scaling constant, and k is a

constant that defines the growth rate. The exponential relationship between

r and φ ensures that the spiral’s shape remains consistent as it expands.

In the context of feature selection for wildfire prediction, the logarithmic

spiral’s proportional growth provides a systematic way to explore the feature

space. Its geometric progression prevents excessive clustering of candidate

features, promoting a balanced search across the space to identify essential

variables effectively.

Key Characteristics

– Constant Pitch Angle: The logarithmic spiral’s pitch angle remains

consistent, supporting systematic and even exploration across different

scales in the search space.

– Self-Similarity: The self-similar nature of the logarithmic spiral ensures

uniform coverage as the spiral progresses outward, making it ideal for

optimization tasks that require balanced exploration and exploitation.

– Exponential Growth: The spiral’s growth is geometric, increasing the

distance between turns as it extends, which is advantageous for gradual

exploration without crowding near the origin.

Algorithm 22 Liver Cancer Algorithm (LCA) with Detailed Logarithmic Spiral

Update for Feature Selection

1: Step 1: Initialize Population

2: for each agent i in range (0, SearchAgents) do
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3: Generate a binary vector of length dimension for feature selection

4: Generate opposite agents to enhance diversity and combine with initial

agents

5: end for

6: Step 2: Calculate Initial Fitness

7: for each agent i do

8: Select features based on agent i’s binary vector

9: Evaluate fitness using cross-validation with XGBoost on the selected features

10: Store fitness score in fit[i]

11: end for

12: Identify the best initial solution, updating best score and best features

13: Step 3: Optimization Loop

14: for each iteration t in range (1,Max iterations) do

15: for each agent i do

16: Exploration with Levy Flight: With probability 0.5, apply Levy

flight to diversify the agent’s position

17: if random() ¡ 0.5 then

18: Generate a step using Levy flight and adjust the agent’s position

19: end if

20: Logarithmic Spiral Update: With probability 0.5, apply logarithmic

spiral update towards the best agent

21: if random() ¡ 0.5 then

22: Set best agent← X[argmax(fit)]

23: Detailed Logic of Logarithmic Spiral Update:

24: Compute the direction vector direction = best agent−X[i]

25: Calculate the Euclidean norm of the direction vector:

norm = ∥direction∥
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26: if norm = 0 then

27: Set norm = 1 to avoid division by zero

28: end if

29: Normalize the direction vector:

unit direction =
direction

norm

30: Set the angular increment θ and calculate the logarithmic spiral step

size:

step = aekθ · unit direction

31: Update agent’s position in the direction of the logarithmic spiral

step:

new position = X[i] + step

32: Convert updated position to binary based on a dynamic threshold:

X[i] = (new position > dynamic threshold(t,Max iterations)).astype(int)

33: end if

34: Crossover and Mutation:

35: Select a partner agent at random

36: Apply crossover to generate a child:

child← crossover(X[i], X[partner idx])

37: Apply mutation to the child:

mutated child← mutation(child,mutation rate)

38: Calculate the fitness of the mutated child

39: if mutated child fitness ¿ current agent fitness then

40: Replace the current agent with the mutated child
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41: end if

42: end for

43: Update Best Solution:

44: if Current best fitness is greater than previous best then

45: Update best score and best features

46: end if

47: end for

48: Step 4: Return Results

49: Output: The best solution best features, best fitness score best score, and

fitness history over iterations

Figure 3.8: Visualization of the Logarithmic Spiral

In summary, each spiral update method Archimedean, Logarithmic, Hyperbolic,
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or Lituus —offers unique advantages in navigating the solution space. These spirals

provide diverse exploration-exploitation dynamics, enhancing our feature selection

and optimization process.

To assess the impact of each spiral on algorithm performance, we define several

evaluation metrics that allow us to measure effectiveness objectively across multiple

runs. The following section outlines the key metrics used to quantify performance,

stability, and feature selection capability, which form the basis for our results and

comparative analysis.

3.6 Evaluation Metrics

To thoroughly evaluate the performance of our algorithm and its variations, we

utilize several key metrics that provide a detailed assessment of effectiveness,

stability, and feature selection capabilities. These metrics allow us to quantify the

impact of the proposed methods across multiple executions, ensuring robustness

and reliability.

3.6.1 Mean Fitness Function

The mean fitness function measures the algorithm’s average performance over

multiple runs, indicating its effectiveness.

Mean Fitness =
1

n

n∑
i=1

fitness(Ai) (3.34)

Here, n is the number of runs, and fitness(Ai) represents the fitness value of
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Table 3.2: Comparison of Spiral Types for Feature Selection

Spiral Type Growth Rate Key Advantage Best-Suited Sce-

nario

Archimedean Spi-

ral

Linear Even, systematic

spacing

Dense search

spaces requiring

uniform coverage

Euler Spiral Linear Curvature Smooth transi-

tions, fine-tuned

adjustments

High-dimensional

spaces requiring

gradual tuning

Fermat Spiral Square Root Gradual expan-

sion, balanced

search

Controlled explo-

ration in sparse

feature spaces

Golden Spiral Exponential Self-similarity,

proportional

growth

Complex datasets

with multi-scale

dependencies

Hyperbolic Spiral Inverse Propor-

tionality

Decelerated out-

ward exploration

Focused searches

in constrained fea-

ture spaces

Lituus Spiral Inverse Square

Root

Tight inward

reach, symmetric

branches

Gradual narrow-

ing of high-impact

regions

Logarithmic Spi-

ral

Geometric Constant pitch an-

gle, balanced pro-

gression

Comprehensive

exploration-

exploitation

balance
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the solution in the i-th run.

3.6.2 Best Fitness Function

The best fitness function identifies the algorithm’s optimal performance, highlighting

its peak efficiency.

Best Fitness = min
i=1,...,n

fitness(Ai) (3.35)

3.6.3 Worst Fitness Function

This metric records the worst-case performance, offering insights into the algorithm’s

consistency and identifying scenarios where improvements may be necessary.

Worst Fitness = max
i=1,...,n

fitness(Ai) (3.36)

3.6.4 Standard Deviation

The standard deviation of fitness values measures the algorithm’s stability and

robustness across different runs.

Standard Deviation =

√√√√ 1

n

n∑
i=1

(fitness(Ai)−Mean Fitness)2 (3.37)
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3.6.5 Classification Accuracy (CA)

Classification accuracy evaluates the algorithm’s ability to classify outcomes, aver-

aging accuracy across all runs correctly.

Accuracy =
TP + TN

TP + TN+ FP + FN
(3.38)

Here, TP, TN, FP, and FN represent true positives, true negatives, false

positives, and false negatives, respectively.

3.6.6 Feature Selection Ratio (FSR)

The feature selection ratio quantifies the efficiency of the feature selection process,

calculated as the proportion of selected features to the total features.

FSR =
1

n

n∑
i=1

∑
Ai

d
(3.39)

Here,
∑

Ai represents the number of selected features in the i-th run, and d is

the total number of features.

3.6.7 F-score

The F-score, the harmonic mean of precision and recall, evaluates the relevance

and significance of the selected features.
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F-score =
2 · Precision · Recall
Precision + Recall

(3.40)

3.6.8 Precision and Recall

Precision and recall provide further insights into the algorithm’s performance.

Precision measures the accuracy of optimistic predictions, while recall assesses the

algorithm’s ability to identify all relevant positives.

Precision =
TP

TP + FP
(3.41)

Recall =
TP

TP + FN
(3.42)

3.7 Statistical Tests

To objectively compare the standard Liver Cancer Algorithm (LCA) with its

variations, we apply statistical tests assessing algorithm performance differences.

These methods help establish whether observed improvements are statistically

significant. The Wilcoxon Signed-Rank Test (Wilcoxon [1945]) and Friedman Test

(Friedman [1937]) are employed to assess significant differences between algorithm

performances.
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3.7.1 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a nonparametric test used to compare paired sam-

ples and evaluate whether differences between two related datasets are statistically

significant.

W =
n∑

i=1

rank(Ri) · sgn(Ri) (3.43)

Here, Ri represents the differences between paired observations, and sgn(Ri)

indicates the sign of the difference.

3.7.2 Friedman Test

The Friedman is a nonparametric test comparing multiple algorithms across several

test scenarios. It identifies whether significant differences exist among the groups

being tested.

χ2
F =

12N

k(k + 1)

(
k∑

j=1

R2
j

)
− 3N(k + 1) (3.44)

In this equation:

• N : number of observations

• k: number of algorithms

• Rj: rank sum for the j-th algorithm
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3.7.3 Algorithm Performance Analysis

This study systematically evaluates each algorithm’s performance using well-defined

metrics to provide a comprehensive understanding of its strengths and limitations.

Metrics such as Mean Fitness Function, Classification Accuracy, Recall, Precision,

Feature Selection Ratio (FSR), and F-score are analyzed to capture each algorithm’s

effectiveness, reliability, and feature selection quality.

Given the imbalanced nature of the dataset, we place particular emphasis on

Recall and Accuracy. The recall is critical for assessing the algorithm’s ability

to identify high-risk wildfire events accurately, minimizing false negatives, which

could lead to unanticipated and severe consequences. Accuracy complements this

by providing a broader measure of the algorithm’s overall predictive capability. To

rank the algorithms fairly, we apply the Friedman and Wilcoxon Signed-Rank tests,

which are robust non-parametric tools for comparing performance across multiple

samples.

3.7.4 Regional Impact Analysis

We extend our evaluation to assess algorithm performance across specific Canadian

provinces, recognizing that regional characteristics such as climate, vegetation

density, and wildfire history can influence predictive accuracy. This regional analysis

allows us to measure how well the algorithms adapt to diverse environmental

conditions, highlighting computational or accuracy shifts that may reveal localized

strengths or challenges.

To identify the most influential variables in each region, we analyze the top
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features selected by each algorithm for specific provinces. We uncover regionally

significant factors and universally impactful variables by ranking these features.

This approach offers nuanced insights into the environmental factors critical for

wildfire prediction, tailoring our findings to the unique conditions of each region.

3.8 Expected Outcomes and Limitations

Anticipated Findings: We expect some algorithms—particularly the refined

Liver Cancer Algorithm (LCA) enhanced with spiral updates—to perform superiorly

in certain climates or terrains. These variations may be particularly evident in

regions with complex environmental dynamics, such as British Columbia or the

Northwest Territories. Additionally, we anticipate identifying variables that show

vital regional significance while recognizing universal predictors relevant across all

provinces.

Potential Limitations: Class imbalance remains a significant challenge despite

using cross-validation and stratified sampling to mitigate its effects. This imbalance

could reduce recall for less frequent wildfire events, potentially leading to lower

precision in identifying medium or low-risk zones. Furthermore, the large dataset

imposes computational constraints, which may limit the depth of algorithmic

comparisons or resolution in analyzing certain features.
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3.9 Ethical and Practical Considerations

3.9.1 Ethical Data Use

This study adheres to strict ethical standards for data usage, mainly when working

with publicly available environmental and geographical datasets such as FIRMS

(NASA) and ERA5 (C3S). We follow guidelines from the data sources to ensure

responsible data management practices to avoid misuse or misinterpretation. Pri-

vacy considerations are rigorously maintained, and results are disseminated with

integrity, ensuring the findings are responsibly communicated.

3.9.2 Practical Implications

The findings of this research hold significant potential for wildfire management

in Canada. By identifying critical predictive factors and optimizing algorithms

for imbalanced datasets, our results can assist local agencies in managing wildfire

risk more effectively. For example, predicting high-risk zones or critical periods

could enable targeted firefighting efforts, faster response times, and risk mitigation.

These insights aim to improve resource allocation and enhance resilience in wildfire

management strategies across Canadian provinces.

3.10 Summary of the Study Framework

This study follows a comprehensive and methodical framework designed to achieve

its goals rigorously and objectively. From initial feature selection to algorithmic
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refinement, we applied various metaheuristic algorithms complemented by novel

spiral updates to optimize predictive accuracy. Our evaluation framework em-

phasizes critical metrics for imbalanced datasets, such as Recall and accuracy, to

ensure relevant and meaningful results. Statistical ranking tests and region-specific

analyses further support our comparative approach.

Through structured phases, from data preprocessing to evaluation, the study

underscores its commitment to advancing wildfire prediction tools and supporting

resource management decisions. This robust framework sets the stage for the

following Discussion section, where we will delve into a detailed analysis of our

findings.
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Chapter 4

Discussion

4.1 Overview of Study Objectives and Method-

ology

This study addresses the urgent need for accurate wildfire prediction tools by

evaluating the effectiveness of various algorithms in different regions of Canada.

We had two main objectives: (1) to assess the predictive performance of multiple al-

gorithms—explicitly focusing on models enhanced with unique spiral updates—and

(2) to examine how region-specific factors influence algorithm performance across

provinces.

We employ a rigorous methodology to achieve these goals, including advanced

feature selection techniques, comparative algorithm testing, and statistical classifi-

cation using the Friedman and Wilcoxon signed-rank tests. We sourced data from

NASA’s FIRMS and the Copernicus Climate Change Service’s ERA5, providing

a comprehensive view of wildfire incidents across diverse environmental contexts.
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We used cross-validation as a critical component during the training and testing

phases to address the inherent class imbalance in wildfire data.

This approach allowed us to objectively compare each algorithm’s strengths

and weaknesses while accounting for regional influences. The insights gained from

this analysis aim to inform advancements in predictive modelling and practical

applications in wildfire management across Canada.

4.1.1 Provincial Results

To provide a thorough analysis, we evaluated algorithm performance across eight

provinces: Alberta, British Columbia (BC), Manitoba, Ontario, Northwest Ter-

ritories (NWT), Quebec, Saskatchewan, and Yukon. This province-by-province

approach highlights regional factors influencing prediction accuracy and provides

insights into how well the algorithms adapt to varying environmental conditions.

For each Canadian province, we focus primarily on Recall due to the imbalanced

nature of wildfire data and the critical importance of identifying all high-risk

wildfire cases. We also assess Precision, Accuracy, and F1 Score to provide

a comprehensive view of each algorithm’s performance. This analysis helps tailor

wildfire risk management strategies to the specific environmental conditions of each

province. Initially, we rank the standard and spiral-enhanced algorithms using the

Friedman test, which is particularly useful for identifying the most effective algo-

rithms before and after spiral updates are applied. Subsequent detailed Wilcoxon

signed-rank tests compare the original algorithms against their spiral-enhanced

versions to ascertain any statistical performance improvements.

After establishing baseline algorithm rankings, we explore the impact of various

spiral updates on the Liver Cancer Algorithm (LCA). We reassess these
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algorithms with another round of Friedman and Wilcoxon tests to evaluate the

effectiveness of the enhancements. Results from these statistical tests are presented

visually through comparative plots and tables, illustrating shifts in algorithm

performance due to spiral enhancements. These visualizations and discussions

highlight how specific algorithms and their enhancements improve the prediction

and management of wildfires in different provincial contexts.

Algorithm Performance in Alberta

We evaluated the wildfire prediction algorithms in Alberta, focusing on their ability

to identify high-risk wildfire cases. The results are summarized in Table 4.1.

Standard Algorithms: The Particle Swarm Optimization (PSO) algorithm

achieved the highest average recall score of 79.79, demonstrating exceptional

effectiveness across all models in Alberta. Close behind, the Golden Ratio

Method (GRM) performed robustly with an average recall of 78.32, followed by

the CBO optimization, which secured an average recall of 78.66. These results

underscore the capabilities of PSO, GRM, and CBO to effectively capture wildfire

cases in Alberta.

Conversely, the Atom Search Optimization (ASO) algorithm had the lowest

average recall score of 57.24, indicating difficulties in adapting to Alberta’s specific

wildfire data characteristics. The Liver Cancer Algorithm (LCA) showed

moderate performance with an average recall of 67.83, which did not match the

more successful algorithms.

A closer examination of the recall scores across individual models reveals

interesting patterns. The Random Forest and Gradient Boosting models
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consistently provided high recall scores for most algorithms, with PSO and CBO

achieving 79.63 and 80.90, respectively. This indicates a strong performance in

capturing wildfire cases using these models.

Table 4.1: Algorithm Rankings for Alberta

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

PSO 79.63 83.88 73.07 85.94 76.43 10 2.00 1

CBO 80.90 81.56 72.00 85.47 73.40 19 3.80 2

GRM 79.30 83.20 71.98 86.80 70.30 21 4.20 3

GA 76.95 80.36 74.86 83.02 76.20 24 4.80 4

MRFO 80.04 80.08 72.89 74.93 75.52 25 5.00 5

EDO 78.58 81.12 70.99 84.70 73.85 26 5.20 6

BMO 78.13 80.19 70.14 83.97 75.35 27 5.40 7

EVO 81.06 80.07 71.80 77.13 74.72 29 5.80 8

WOA 78.37 79.50 70.68 85.31 69.63 30 6.00 9

LCA 72.61 71.58 70.90 60.54 63.52 45 9.00 10

EO 67.70 69.84 65.11 63.08 57.83 50 10.00 11

ASO 63.60 66.13 63.00 46.86 46.59 55 11.00 12

Spiral-Based Methods: Among the spiral-based methods, the Euler Spiral

achieved the highest average Recall across most models, with Random Forest

recording a recall of 80.72 and Gradient Boosting achieving 80.10. This

performance highlights the Euler Spiral’s ability to effectively balance search

space exploration and exploitation, ensuring that essential feature subsets are not

overlooked.

The Hyperbolic Spiral followed closely, delivering strong recall values, partic-

ularly Random Forest at 78.45 and Gradient Boosting at 78.39. Its balance

between diversification and intensification contributed to its competitive perfor-

mance, achieving an average recall of 74.45.

Similarly, the Lituus Spiral demonstrated high recall values, including Ran-

dom Forest at 77.95 and K-Nearest Neighbor at 76.44, securing an average

recall of 74.38. These results emphasize the Lituus Spiral’s capability to model

complex patterns effectively.
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The Logarithmic Spiral, with an average recall of 73.36, delivered consis-

tent performance across models, such as Random Forest at 79.38 and Gradient

Boosting at 78.41. While slightly behind Hyperbolic and Lituus, its systematic

exploration process maintained competitive performance.

Other methods, such as the Fermat Spiral, produced moderate results, achiev-

ing an average recall of 72.62, showing its ability to balance exploration and

exploitation, although it lagged slightly behind the higher-performing spirals.

On the lower end, the Liver Cancer Algorithm (LCA) without spiral updates

ranked consistently lower across most models, with a maximum recall of 72.61

achieved by Random Forest and an average recall of 67.83. This highlights

the importance of integrating spiral updates to enhance LCA’s performance in

addressing feature selection challenges.

Table 4.2: Spiral Algorithm Rankings for Alberta

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

Euler 80.72 80.10 71.80 76.05 75.50 8 1.60 1

Hyperbolic 78.45 78.39 73.14 69.73 72.53 13 2.60 2

Logarithmic 79.38 78.41 74.08 66.32 68.59 16 3.20 3

Lituus 77.95 77.19 76.44 68.77 71.55 17 3.40 4

Fermat 78.04 76.40 69.75 69.40 69.50 22 4.40 5

Golden 73.83 72.70 69.72 64.07 67.59 31 6.20 6

LCA 72.61 71.58 70.90 60.54 63.52 33 6.60 7

Archimedean 72.36 70.76 67.81 60.25 62.26 40 8.00 8

On the lower end, the Liver Cancer Algorithm (LCA) without spiral

updates ranked consistently lower across most models, with a maximum recall of

72.61 achieved by Random Forest. This reinforces the impact of spiral updates

in enhancing the LCA’s effectiveness.

Overall Algorithm Rankings: The Friedman test assessed the relative per-

formance of all algorithms, including standard and spiral-based methods. Figure
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4.1 visualizes the ranking of algorithms based on their average recall scores, where

lower ranks indicate better performance.

The Particle Swarm Optimization (PSO) emerged as the best-performing

algorithm with an average rank of 2.8, followed by CBO at 4.6, and GRM at 5.8.

The Euler Spiral performed notably well among the spiral methods, achieving an

average rank of 6.6. Other strong performers included GA at 6.0 and MRFO at

6.2.

In contrast, algorithms such as Archimedean Spiral and ASO ranked lowest,

with ranks of 17.2 and 19.0, respectively. These results emphasize the effectiveness

of top-ranked methods in feature selection and modeling, while highlighting areas

for improvement in lower-performing approaches.

Figure 4.1: Average Recall Ranks (Friedman Test)
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Algorithm Performance in British Columbia (BC)

The Particle Swarm Optimization (PSO) again led the performance in British

Columbia with the highest average recall score of 75.60, indicating its robustness

across different regional datasets. The Equilibrium Optimizer (EDO) came

close with an average recall of 74.99, demonstrating effective wildfire prediction in

this province.

The Atom Search Optimization (ASO) remained the least effective with the

lowest average recall score of 39.61 in British Columbia, highlighting significant

challenges in its application to wildfire data in this region. The Manta ray

foraging optimization (MRFO) also underperformed with an average recall of

72.40, showing some limitations in adapting to the specifics of British Columbia’s

wildfire scenarios.

In terms of individual model performances, the Random Forest and Gradient

Boosting models again showed strong recall scores for top algorithms like PSO and

EDO, with 78.71 and 78.95 respectively in British Columbia. This suggests that

these models are particularly suited to leveraging the strengths of these algorithms

for wildfire prediction in the region.

These insights highlight the varying effectiveness of different algorithms across

provinces and models, suggesting that regional characteristics and data specifics

significantly influence algorithm performance in wildfire prediction tasks.

Spiral-Based Enhancements: Among the spiral-based methods, the LCA

achieved the highest average Recall, particularly excelling in Random Forest with

a recall of 78.36 and Gradient Boosting at 78.24. This performance highlights
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Table 4.3: Algorithm Rankings for British Columbia

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

PSO 78.70 79.12 70.73 75.57 73.88 11 2.20 1

EDO 78.56 78.95 68.34 75.00 74.13 19 3.80 2

EVO 78.50 79.31 67.67 75.14 73.26 23 4.60 3

GA 78.18 79.13 68.08 75.84 73.48 23 4.60 3

BMO 78.23 79.16 69.97 74.91 72.56 26 5.20 5

GRM 78.27 77.88 70.05 71.82 74.29 26 5.20 5

WOA 78.22 78.94 68.83 75.35 72.80 28 5.60 7

LCA 78.36 78.24 67.35 74.53 73.44 33 6.60 8

CBO 77.78 78.11 67.86 73.52 72.98 40 8.00 9

MRFO 75.71 76.91 68.18 70.55 70.64 46 9.20 10

EO 71.81 72.38 64.64 64.13 65.64 55 11.00 11

ASO 38.92 38.67 40.27 40.44 39.77 60 12.00 12

Table 4.4: Spiral Algorithm Rankings for British Columbia

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

LCA 78.36 78.24 67.35 74.53 73.44 10 2.00 1

Archimedean 78.08 78.26 70.28 72.23 71.12 12 2.40 2

Hyperbolic 76.30 76.04 70.54 73.28 72.33 14 2.80 3

Golden 76.85 76.53 68.33 70.06 69.98 20 4.00 4

Euler 75.39 74.58 68.41 71.96 72.48 20 4.00 4

Lituus 73.31 74.84 65.89 64.86 66.45 30 6.00 6

Logarithmic 72.76 72.58 63.15 65.30 65.31 34 6.80 7

Fermat 56.42 55.88 50.92 50.05 48.05 40 8.00 8

LCA’s strong feature selection capabilities, surpassing other spirals.

The Archimedean Spiral followed closely, demonstrating solid recall values

with Random Forest at 78.08 and Gradient Boosting at 78.26. Its ability to

balance exploration and exploitation contributed to its competitive performance.

The Golden Spiral also showed promise, maintaining consistent recall scores

across models, including 76.85 in Random Forest and 76.53 in Gradient

Boosting.

Other spirals, such as Hyperbolic and Euler, demonstrated moderate im-

provements with average recalls of 73.30 and 72.16, respectively. These results

underscore the adaptability of spiral-based approaches in enhancing predictive

performance.
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On the lower end, the Fermat Spiral ranked lowest, with an average recall of

52.66, highlighting areas for potential optimization in feature selection strategies.

Statistical Validation: The Friedman test results validated the performance

differences among the algorithms, yielding significant statistics (Statistic: 69.25,

P-value: 0.00000 and Statistic: 71.81, P-value: 0.00000). Rankings further

highlighted the dominance of the LCA and Archimedean Spirals over other

methods. The LCA Standard ranked 7.6, whereas the Archimedean Spiral

ranked 8.2, followed by the Hyperbolic Spiral at 9.4. Conversely, lower-ranked

methods such as Logarithmic Spiral (16.2) and Fermat Spiral (18.0) demon-

strated relatively weaker performance, emphasizing the superior adaptability of

top-performing algorithms in modeling complex relationships and optimizing fea-

ture selection.

Figure 4.2: Visualization of average recall rankings among algorithms in BC

(Friedman Test results). Lower ranks indicate better performance, with several

spiral-enhanced algorithms outperforming the LCA.
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Overall Algorithm Rankings: The Friedman test assessed the relative per-

formance of all algorithms, including standard and spiral-based methods. Figure

4.1 visualizes the ranking of algorithms based on their average recall scores, where

lower ranks indicate better performance.

The Particle Swarm Optimization (PSO) emerged as the best-performing

algorithm with an average rank of 2.2, followed by EDO at 4.4 and EVO at

5.4. Among spiral-based methods, the Euler Spiral achieved an average rank of

11.4, outperforming several algorithms. However, Archimedean and Hyperbolic

also performed competitively, ranking 8.2 and 9.4, respectively. On the lower

end, methods like Logarithmic (16.2) and Fermat (18.0) demonstrated weaker

performance, emphasizing the dominance of top-ranked algorithms in enhancing

feature selection and predictive accuracy.

Algorithm Performance in Manitoba

The results are summarized in Table 4.5. The Genetic Algorithm (GA) show-

cased the best average recall in Manitoba, leading with an average score of 69.63.

It demonstrated robust performance across all models, affirming its capability in

handling diverse data scenarios effectively. Following closely were the Equilibrium

Optimizer (EVO) and the Exponential Distribution Optimizer (EDO),

with average recalls of 69.53 and 69.39 respectively, highlighting their efficiency

in optimizing prediction models under varying conditions.

On the other hand, the Atom Search Optimization (ASO) lagged signifi-

cantly behind other algorithms with the lowest average recall of 44.34, suggesting

that ASO might be less suited to the specific challenges presented by the Manitoba

dataset. The algorithms like Equilibrium Optimizer and CBO performed well,
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especially in models such as Random Forest and Logistic Regression, indicat-

ing a strong adaptability to the data characteristics in Manitoba. .

Table 4.5: Algorithm Rankings for Manitoba

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

EVO 72.30 73.35 63.29 73.53 65.17 18 3.60 1

CBO 71.22 70.93 63.82 72.83 67.88 19 3.80 2

LCA 72.47 70.98 62.96 71.04 67.20 20 4.00 3

GA 71.11 72.30 65.72 72.75 66.29 22 4.40 4

MRFO 72.42 70.61 62.59 72.24 66.36 24 4.80 5

EDO 71.38 70.55 61.89 75.48 67.65 25 5.00 6

PSO 72.09 70.31 64.59 68.55 67.04 29 5.80 7

BMO 71.92 71.66 62.11 69.77 64.49 34 6.80 8

WOA 71.19 70.51 60.30 71.20 66.02 39 7.80 9

GRM 67.67 68.70 62.59 69.01 64.71 44 8.80 10

EO 63.79 61.43 56.89 64.54 60.43 55 11.00 11

ASO 43.65 42.94 46.07 45.32 43.73 60 12.00 12

Spiral-Based Enhancements: Among the spiral-based methods evaluated in

Manitoba, the Liver Cancer Algorithm (LCA) emerged as the top performer,

demonstrating its strong feature selection capabilities. It particularly excelled in

Random Forest with a recall of 72.47 and Gradient Boosting with a recall of

70.98. These results underscore the LCA’s ability to effectively model complex

patterns in wildfire prediction.

Following closely was the Archimedean Spiral, which showed solid perfor-

mance across models, with recall scores of 69.32 in Random Forest and 69.27 in

Gradient Boosting. Its balance between exploration and exploitation contributed

significantly to its competitive performance.

The Hyperbolic Spiral also demonstrated robust performance, particularly

with recall values of 65.58 in Random Forest and 66.46 in Gradient Boosting.

This method’s blend of diversification and intensification strategies has proven

effective in navigating the challenges of wildfire prediction.

Meanwhile, the Euler Spiral and Lituus Spiral achieved moderate improve-
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ments, with average recalls of 61.78 and 59.41 respectively. These spirals are

notable for their methodical approach to modeling, yet they show potential for

further optimization.

The Logarithmic Spiral provided consistent results across various models

but fell slightly behind the leading spirals with an average recall of 60.61. Its

systematic exploration process maintains a competitive edge, although there is

room for enhancement.

On the lower end, the Fermat Spiral and Golden Spiral demonstrated areas

for potential improvement, with the lowest recalls of 54.76 and 56.41 respectively.

These results highlight the need for further refinement in their algorithms to better

tackle the complexities of wildfire prediction in Manitoba.

Table 4.6: Spiral Algorithm Rankings for Manitoba

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

LCA 72.47 70.98 62.96 71.04 67.20 6 1.20 1

Archimedean 69.32 69.27 65.12 68.21 66.19 9 1.80 2

Hyperbolic 65.58 66.46 60.46 67.25 66.11 15 3.00 3

Euler 62.71 62.12 59.35 64.97 59.73 25 5.00 4

Logarithmic 64.77 62.65 54.90 65.06 55.64 26 5.20 5

Lituus 61.80 62.14 55.28 65.22 54.60 27 5.40 6

Fermat 57.93 57.27 55.25 51.18 52.14 36 7.20 7

Golden 57.79 57.12 55.20 55.20 54.76 36 7.20 7

Statistical Validation: The Friedman test confirmed significant differences in

algorithm performance, with a test statistic of 79.62 and a p-value of 9.99e-10,

indicating strong evidence against the null hypothesis of equal performance. Figure

4.3 visualizes the rankings of all algorithms.
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Figure 4.3: Visualization of average recall rankings among algorithms in Manitoba

(Friedman Test results). Lower ranks indicate better performance, with several

spiral-enhanced algorithms outperforming the LCA.

Algorithm Performance in Northwest Territories (NWT)

In the Northwest Territories, the Manta Ray Foraging Optimization (MRFO)

stood out with the highest average recall of 75.49, demonstrating its efficiency in

optimizing model parameters under varying conditions. The Compound Binary

Optimization (CBO) also performed well, achieving a similar high average recall

of 74.81, particularly excelling in logistic regression and support vector machine

models.

Conversely, the Atom Search Optimization (ASO) and Equilibrium

Optimizer (EO) showed the least effective performance with the lowest average

recalls of 51.99 and 51.46 respectively. These results suggest that these algorithms

may require further tuning or adaptation to better suit the data peculiarities in

NWT.
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Table 4.7: Algorithm Rankings for Northwest Territories (NWT)

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

MRFO 76.32 75.90 71.69 80.99 72.54 12 2.40 1

BMO 75.16 74.83 71.19 79.29 73.35 21 4.20 2

CBO 76.14 74.73 72.00 79.67 71.50 21 4.20 2

PSO 74.96 75.91 69.91 79.98 71.84 21 4.20 2

EVO 74.90 76.93 69.23 79.33 71.80 25 5.00 5

GA 73.68 76.17 67.19 80.61 72.37 26 5.20 6

WOA 75.30 77.45 69.13 78.01 70.25 26 5.20 6

EDO 74.38 77.15 67.02 78.78 70.04 33 6.60 8

GRM 73.36 73.36 69.65 74.87 68.44 43 8.60 9

LCA 73.91 72.79 64.82 76.73 67.94 47 9.40 10

EO 51.93 53.03 56.65 44.05 51.62 57 11.40 11

ASO 52.39 52.79 52.84 50.80 51.15 58 11.60 12

Spiral Algorithm Performance in Northwest Territories (NWT) In the

Northwest Territories, the effectiveness of spiral-based algorithms was thoroughly

evaluated for wildfire prediction. The outcomes are detailed in Table 4.7.

Among the spiral-based methods, the Archimedean Spiral stood out as the

top performer, achieving the highest average recall scores across most models.

Specifically, it excelled in Logistic Regression with a recall of 77.65 and demon-

strated consistent performance in Random Forest and Gradient Boosting with

recalls of 75.87 and 76.10 respectively. This reflects its robust ability to navigate

the feature space effectively, balancing both exploration and exploitation.

Following closely was the Golden Spiral, which showed strong recall values,

particularly in Logistic Regression with a recall of 75.84 and Gradient Boost-

ing at 75.08. This method’s consistent performance across models indicates its

potential in handling diverse and complex data structures inherent to wildfire

prediction.

The Liver Cancer Algorithm (LCA) also demonstrated commendable

performance, with an average recall of 71.64. It showed a particularly strong recall

in Logistic Regression at 76.73, proving its efficacy in specific scenarios despite
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a slightly lower performance in K-Nearest Neighbor.

Other methods such as the Logarithmic Spiral and Hyperbolic Spiral

delivered moderate results with average recalls of 68.79 and 66.26, respectively.

These algorithms, while effective to a degree, indicate the need for further tuning

to optimize their performance in the challenging environments of the Northwest

Territories.

The Fermat Spiral and Euler Spiral showed some limitations in achieving

higher recall values, with the Euler Spiral in particular finding challenges in

Logistic Regression and Support Vector Machine with lower recall scores of

55.98 and 62.10 respectively.

At the lower end of the performance spectrum, the Lituus Spiral recorded the

lowest overall recall of 64.29, struggling particularly in Logistic Regression and

K-Nearest Neighbor with recalls of 58.36 and 62.72. This suggests that while

the Lituus Spiral may have potential, it requires significant adjustments to better

address the specific demands of wildfire prediction in this region.

Overall, the evaluation of spiral-based algorithms in the Northwest Territories

illustrates a varied landscape of effectiveness, with some algorithms showing promise

in specific models while others require enhancements to reach their full potential in

wildfire prediction.

Table 4.8: Spiral Algorithm Rankings for Northwest Territories (NWT)

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

Archimedean 75.87 76.10 71.13 77.65 72.05 7 1.40 1

Golden 74.45 75.08 71.27 75.84 73.12 9 1.80 2

LCA 73.91 72.79 64.82 76.73 67.94 17 3.40 3

Logarithmic 70.67 71.03 67.11 68.11 67.01 20 4.00 4

Fermat 69.80 67.63 65.59 66.20 65.21 30 6.00 5

Euler 70.16 69.58 67.79 55.98 62.10 30 6.00 5

Hyperbolic 66.85 68.33 64.09 66.90 65.10 33 6.60 7

Lituus 68.98 69.94 62.72 58.36 63.44 34 6.80 8
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Statistical Validation: The Friedman test confirmed statistically significant

differences in algorithm performance, with a test statistic of 71.49 and a p-value of

2.52e-08. Figure 4.4 illustrates the ranking distribution, highlighting the superior

performance of spiral-based enhancements over the standard LCA.

Figure 4.4: Visualization of average recall rankings among algorithms in Northwest

Territories (Friedman Test results). Lower ranks indicate better performance, with

several spiral-enhanced algorithms outperforming the LCA.

Algorithm Performance in Ontario

In Ontario, the Equilibrium Optimizer (EVO) emerged as the top-performing

algorithm with the highest average recall of 69.73, showcasing its effectiveness

across diverse models, particularly in the K-Nearest Neighbor model where it

achieved exceptionally high recall. The Manta Ray Foraging Optimization

(MRFO) followed closely with an average recall of 68.80, indicating its robust

capability in handling complex datasets.
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The Atom Search Optimization (ASO), however, recorded the lowest

performance with an average recall of 44.67, reflecting challenges in adapting

to the specific characteristics of the Ontario dataset. The algorithms such as

Exponential Distribution Optimizer (EDO) and Genetic Algorithm (GA)

also showed good performance, particularly in logistic regression, underlining their

strong adaptability.

Table 4.9: Algorithm Average Recall and Rankings for Ontario

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Average Recall Ranking

ASO 46.40 46.24 35.45 47.85 47.40 44.67 12

BMO 67.99 66.74 62.04 71.08 64.83 66.53 5

CBO 63.63 66.15 61.23 73.40 62.15 65.31 6

EVO 64.47 65.75 82.43 74.24 61.77 69.73 1

EO 54.82 52.64 47.09 51.44 49.79 51.16 11

EDO 68.16 68.13 63.71 72.74 65.55 67.66 3

GA 66.41 66.48 65.22 73.70 64.16 67.19 4

GRM 64.55 65.66 52.77 69.66 63.65 63.26 9

LCA 58.98 57.09 51.57 66.53 60.07 58.85 10

MRFO 68.16 68.15 66.29 72.44 68.94 68.80 2

PSO 64.42 63.30 60.01 71.51 64.45 64.74 7

WOA 64.20 63.69 56.83 71.45 62.41 63.72 8

Spiral Algorithm Performance in Ontario In Ontario, the effectiveness of

spiral-based algorithms in wildfire prediction was systematically evaluated, with

summarized results presented in Table 4.10.

The Hyperbolic Spiral emerged as the leader among the spiral algorithms,

showcasing the highest average recall values. It demonstrated superior performance

particularly in Random Forest and Gradient Boosting with recall scores of

70.21 and 69.34 respectively. This highlights its efficient balance of exploration

and exploitation tactics in complex prediction scenarios.

Closely following was the Archimedean Spiral, which secured the second

position. It recorded strong recall scores, especially in Random Forest and

Logistic Regression, with values of 68.09 and 64.62. Its methodical approach
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to navigating the feature space has proven effective, albeit slightly less so than the

Hyperbolic Spiral.

The Fermat Spiral also demonstrated commendable results, with an average

recall of 63.20, performing particularly well in Logistic Regression with a

recall of 62.91. Its consistent performance across different models underscores its

potential in handling diverse data environments.

Other algorithms such as the Logarithmic Spiral and Lituus Spiral showed

moderate effectiveness with average recalls of 62.33 and 61.52 respectively. These

results suggest that while capable, they may require further optimization to enhance

their predictive accuracy.

The Euler Spiral and Golden Spiral ranked lower, indicating room for

improvement in their feature selection processes. They managed average recalls of

60.53 and 60.33, highlighting the challenges they face in adapting to the complex

wildfire prediction landscape in Ontario.

At the lower end of the performance spectrum, the Liver Cancer Algorithm

(LCA) exhibited the least effective performance, with an average recall of 58.05.

Despite showing strong performance in Logistic Regression, its overall lower

scores reflect significant limitations in its current configuration for the Ontario

dataset.

Statistical Validation: The Friedman test confirmed significant differences in

algorithm performance, with a test statistic of 61.98 and a p-value of 9.74e-07,

indicating strong evidence against the null hypothesis of equal performance. Figure

4.5 illustrates the ranking distribution, showcasing the superior performance of

spiral-based enhancements over the standard LCA and other algorithms.
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Table 4.10: Algorithm Rankings for Ontario

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

MRFO 68.16 68.15 66.29 72.44 68.94 10 2.00 1

EDO 68.16 68.13 63.71 72.74 65.55 13 2.60 2

GA 66.41 66.48 65.22 73.70 64.16 18 3.60 3

BMO 67.99 66.74 62.04 71.08 64.83 22 4.40 4

EVO 64.47 65.75 82.43 74.24 61.77 23 4.60 5

CBO 63.63 66.15 61.23 73.40 62.15 31 6.20 6

PSO 64.42 63.30 60.01 71.51 64.45 33 6.60 7

GRM 64.55 65.66 52.77 69.66 63.65 36 7.20 8

WOA 64.20 63.69 56.83 71.45 62.41 38 7.60 9

LCA 58.98 57.09 51.57 66.53 60.07 50 10.00 10

EO 54.82 52.64 47.09 51.44 49.79 55 11.00 11

ASO 46.40 46.24 35.45 47.85 47.40 60 12.00 12

Algorithm Performance in Quebec

In Quebec, the Particle Swarm Optimization (PSO) algorithm demonstrated

the highest overall effectiveness with an average recall of 78.69, showcasing its

strong performance across all models, particularly excelling in logistic regression

with an impressive recall of 88.40. This highlights PSO’s capability to adapt well

to the diverse modeling challenges presented by the Quebec dataset.

The Equilibrium Optimizer (EVO) also performed admirably, securing the

second-highest average recall of 78.30. It was particularly effective in handling

the K-Nearest Neighbor model, indicating its robustness in managing complex,

non-linear data structures.

On the other hand, the Atom Search Optimization (ASO) struggled in

Quebec, recording the lowest average recall of 54.21. This suggests potential

difficulties in parameter tuning or in adapting to the specific characteristics of the

data used in Quebec.

Spiral-Based Enhancements in Quebec: In Quebec, the evaluation of spiral-

based algorithms revealed significant variations in their effectiveness for predicting
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Figure 4.5: Visualization of average recall rankings among algorithms in Ontario

(Friedman Test results). Lower ranks indicate better performance, with several

spiral-enhanced algorithms outperforming the LCA.

wildfires, as detailed in Table 4.11.

The Archimedean Spiral led the rankings, achieving the highest average

recall. It showcased exceptional performance in Logistic Regression with a recall

of 86.12, and in Gradient Boosting, where it achieved a recall of 81.64. This

algorithm’s ability to adeptly navigate complex data landscapes is evident from its

strong performance across diverse models.

Following closely, the Logarithmic Spiral demonstrated robust recall scores,

particularly in Gradient Boosting and Logistic Regression with recalls of

81.56 and 79.39, respectively. This indicates its effective use of logarithmic

progression to optimize feature selection and model training processes.

The Euler Spiral also performed well, with notable strength in Gradient

Boosting where it recorded a recall of 83.38. Its unique approach to balancing
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Table 4.11: Algorithm Rankings for Quebec

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

PSO 78.97 81.38 73.57 88.40 71.13 14 2.80 1

GRM 79.30 83.20 71.98 86.80 70.30 15 3.00 2

EDO 78.58 81.12 70.99 84.70 73.85 21 4.20 3

EVO 82.07 82.30 69.60 84.59 72.93 22 4.40 4

CBO 79.26 84.39 68.00 87.06 69.40 25 5.00 5

BMO 78.13 80.19 70.14 70.14 83.97 29 5.80 6

WOA 78.37 79.50 70.68 85.31 69.63 30 6.00 7

MRFO 76.33 75.77 72.15 83.53 70.06 34 6.80 8

GA 77.10 76.44 70.04 80.01 70.29 38 7.60 9

EO 67.70 69.84 70.14 63.08 57.83 49 9.80 10

LCA 68.41 67.24 66.30 68.22 61.49 52 10.40 11

ASO 54.59 54.56 53.80 54.13 53.99 60 12.00 12

computational efficiency with exploratory data analysis has contributed to its

competitive average recall of 76.40.

Not to be overlooked, the Hyperbolic Spiral provided solid results with a

particularly strong performance in Random Forest achieving a recall of 79.15.

Its method of focusing on diversification in the feature space aligns well with the

dynamic and variable-intensive nature of wildfire prediction.

On the other end, the Fermat Spiral and the Golden Spiral demonstrated

moderate effectiveness with average recalls of 72.58 and 72.77, respectively. While

they showed potential in specific models, their overall performance suggests room

for optimization to fully harness their algorithms’ capabilities in the Quebec

environment.

The Lituus Spiral and the Liver Cancer Algorithm (LCA) encountered

some challenges, with the LCA showing the least adaptability among the evaluated

spirals, holding the lowest average recall of 66.33. This underlines the necessity

for potential algorithmic adjustments or enhanced feature engineering to improve

its application in this specific regional context.
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Table 4.12: Spiral Algorithm Rankings for Quebec

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

Archimedean 77.78 81.64 75.78 86.12 71.30 9 1.80 1

Logarithmic 77.56 81.56 74.46 79.39 72.43 14 2.80 2

Euler 77.45 83.38 70.96 81.86 70.35 14 2.80 2

Hyperbolic 79.15 75.74 69.45 78.63 72.62 15 3.00 4

Fermat 75.05 71.26 65.92 80.70 69.96 28 5.60 5

Golden 74.77 74.71 68.76 72.38 69.24 29 5.80 6

Lituus 72.44 72.10 68.42 71.04 69.91 32 6.40 7

LCA 68.41 67.24 66.30 68.22 61.49 39 7.80 8

Statistical Validation: The Friedman test confirmed significant differences in

algorithm performance, with a test statistic of 60.56 and a p-value of 1.66e-06,

indicating strong evidence against the null hypothesis of equal performance. Figure

4.6 illustrates the ranking distribution, highlighting the superior performance of

spiral-based enhancements over the standard LCA.

Figure 4.6: Visualization of average recall rankings among algorithms in Quebec

(Friedman Test results). Lower ranks indicate better performance, with several

spiral-enhanced algorithms outperforming the LCA.
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Algorithm Performance in Saskatchewan

In Saskatchewan, the Genetic Algorithm (GA) emerged as the top performer

with the highest average recall of 78.78, indicating its strong adaptability and

effectiveness across various models. This was particularly notable in the Support

Vector Machine and Logistic Regression models, where it achieved recalls of 78.20

and 77.91 respectively.

The Particle Swarm Optimization (PSO) and the Whale Optimization

Algorithm (WOA) also showed robust performances with average recalls of 78.33

and 78.01, respectively, securing them positions among the top three algorithms.

These results underscore the capability of PSO and WOA to efficiently navigate

the predictive modeling landscape in Saskatchewan.

Conversely, the Atom Search Optimization (ASO) had the lowest average

recall of 47.26 in Saskatchewan, similar to its performance in Quebec. This consis-

tent underperformance across different provinces may necessitate a reevaluation of

its application or further optimization to better suit the regional data specifics.

Table 4.13: Algorithm Rankings for Saskatchewan

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

GA 80.62 81.10 76.07 77.91 78.20 10 2.00 1

PSO 80.83 80.78 75.01 78.36 76.67 11 2.20 2

WOA 80.87 80.93 73.55 78.13 76.55 11 2.20 2

BMO 80.30 80.34 73.22 77.90 76.06 24 4.80 4

EVO 80.80 80.27 71.74 77.49 76.23 26 5.20 5

CBO 80.24 80.90 72.07 74.52 74.47 30 6.00 6

GRM 80.14 80.55 72.40 73.62 71.80 35 7.00 7

EDO 79.92 79.91 71.51 76.45 74.32 39 7.80 8

MRFO 79.07 80.14 71.46 75.37 74.70 39 7.80 8

EO 76.97 77.12 69.37 68.76 71.36 50 10.00 10

LCA 75.92 75.13 62.10 68.51 67.64 55 11.00 11

ASO 47.40 50.46 51.79 44.86 41.81 60 12.00 12
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Spiral-Based Enhancements: The evaluation of spiral-based algorithms for

wildfire prediction in Saskatchewan has highlighted varying levels of effectiveness

across different models, as summarized in Table 4.13.

Leading the pack was the Archimedean Spiral, which showcased superior

performance across all models. It achieved impressive recall scores in Random

Forest and Gradient Boosting with values of 81.02 and 80.28, respectively,

culminating in the highest average recall of 77.38. This spiral’s ability to effectively

explore and exploit the feature space makes it particularly suited to the predictive

challenges in Saskatchewan.

The Lituus Spiral and the Euler Spiral both shared the second rank with

an average recall of 77.20. These algorithms demonstrated strong performances,

particularly in Logistic Regression and Support Vector Machine, where they

matched each other with recalls of 77.39 and 76.08, indicating their robustness in

handling diverse data structures.

The Fermat Spiral secured the third rank with a solid average recall of 75.66.

While it trailed slightly behind the leaders, it still showed strong potential in models

like Random Forest and Gradient Boosting with recalls of 79.14 and 78.75,

suggesting that with slight optimizations, it could compete closely with the top

performers.

Subsequently, the Logarithmic Spiral and the Golden Spiral ranked fourth

and fifth, with average recalls of 75.19 and 74.31, respectively. These spirals,

while effective, displayed a need for enhancements to elevate their performance to

the top tier.

On the lower end, the Hyperbolic Spiral and the Liver Cancer Algorithm
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(LCA) showed more modest results. The Hyperbolic Spiral, despite its strengths in

diversification and intensification, recorded an average recall of 68.56, whereas the

LCA lagged slightly behind with 69.86, marking areas for improvement in these

algorithms to better address the complexities of wildfire prediction in Saskatchewan.

Statistical Validation: The Friedman test validated the performance differences,

yielding a test statistic of 76.04 and a p-value of 4.18e-09, confirming significant

differences in algorithm effectiveness. Figure 4.7 visualizes the rankings, showcasing

the consistent superiority of spiral-based enhancements over the standard LCA.

Figure 4.7: Visualization of average recall rankings among algorithms in

Saskatchewan (Friedman Test results). Lower ranks indicate better performance,

with spiral-enhanced algorithms generally outperforming the LCA.
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Algorithm Performance in Yukon

In Yorkton, the Genetic Algorithm (GA) again topped the performance charts

with an outstanding average recall of 81.80, proving its consistent effectiveness

across different geographical datasets. The Particle Swarm Optimization

(PSO) was also notably effective, scoring an average recall of 80.90, particularly

excelling in the Gradient Boosting and Logistic Regression models.

The Atom Search Optimization (ASO), much like in Manitoba, recorded

the lowest performance in Yorkton with an average recall of 51.81. This continued

underperformance across regions suggests a need for revisiting the adaptation

of ASO to regional wildfire data specifics. Contrarily, PSO and EDO showed

remarkable adaptability and effectiveness, marked by high recall scores across the

board, thus asserting their utility in high-stakes environments such as wildfire

prediction.

This regional analysis underlines the critical importance of choosing the right

algorithm based on both the nature of the data and specific regional characteristics

to optimize performance outcomes in wildfire prediction tasks.

Table 4.14: Algorithm Rankings for Yorkton

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

GA 82.40 84.86 72.24 90.37 79.12 13 2.60 1

PSO 81.58 85.87 67.83 89.34 79.90 18 3.60 2

BMO 81.10 85.70 65.17 90.67 72.95 25 5.00 3

EDO 78.77 90.12 68.98 86.27 74.17 25 5.00 3

MRFO 79.79 79.80 69.28 87.78 74.61 26 5.20 5

CBO 78.76 80.91 67.58 88.93 80.53 27 5.40 6

EVO 77.51 83.00 64.47 90.30 73.76 35 7.00 7

WOA 75.57 76.50 67.35 90.44 73.57 38 7.60 8

EO 77.94 78.37 72.72 79.12 70.13 39 7.80 9

GRM 78.71 77.59 69.02 83.01 70.24 40 8.00 10

LCA 74.61 76.33 71.09 82.89 71.20 44 8.80 11

ASO 50.94 55.30 48.95 51.94 51.91 60 12.00 12
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Spiral-Based Enhancements: The assessment of spiral-based algorithms in

Yorkton presents intriguing findings on their efficacy in wildfire prediction, as

detailed in Table 4.14.

Leading the evaluation, the Euler Spiral stood out significantly, achieving

the top average recall of 81.07. It showcased exceptional performance across

multiple models, especially notable in Logistic Regression where it reached a

recall of 91.85, and in Gradient Boosting with 85.71. This underscores the

Euler Spiral’s robust adaptability and superior capability in managing complex

datasets effectively.

The Archimedean Spiral secured the second rank with a strong average

recall of 78.93. It performed particularly well in Logistic Regression, achieving

the highest recall in this model at 93.11. Its consistent performance across other

models also highlights its reliable predictive power.

Following closely, the Logarithmic Spiral recorded a solid average recall of

78.42, excelling in Logistic Regression with a recall of 87.08. This spiral’s

systematic approach to data exploration and extraction of meaningful patterns

contributes significantly to its high performance.

The Hyperbolic Spiral ranked fourth with an average recall of 76.39, demon-

strating strong capability in Logistic Regression with a recall of 84.86. Its

unique method of exploring the search space ensures effective feature selection,

albeit slightly behind the top performers.

Sharing the fifth rank, both the Fermat Spiral and the Liver Cancer Algo-

rithm (LCA) achieved an average recall of 75.62. The Fermat Spiral performed

well across models with particularly high scores in Logistic Regression, whereas
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the LCA showed balanced performance, indicating their potential in specific con-

texts.

On the lower end, the Golden Spiral and Lituus Spiral encountered chal-

lenges, with average recalls of 69.12 and 59.02 respectively. These results suggest

that these algorithms may require further refinement to enhance their predictive

accuracy in the context of Yorkton’s complex wildfire dynamics.

Table 4.15: Spiral Algorithm Rankings for Yorkton

Algorithm Random Forest Gradient Boosting K-Nearest Neighbor Logistic Regression Support Vector Machine Rank Sum Average Ranking Ranking

Euler 85.30 85.71 70.98 91.85 75.49 10 2.00 1

Archimedean 78.29 78.77 67.76 93.11 76.72 14 2.80 2

Logarithmic 79.90 78.88 70.90 87.08 75.42 15 3.00 3

Hyperbolic 78.06 74.91 71.05 84.86 73.05 21 4.20 4

LCA 74.61 76.33 71.09 82.89 71.20 22 4.40 5

Fermat 74.46 75.37 73.12 83.74 69.42 23 4.60 6

Golden 70.87 68.26 65.39 78.78 62.32 35 7.00 7

Lituus 58.99 56.46 56.24 70.31 57.10 40 8.00 8

Statistical Validation: The Friedman test confirmed significant differences in

algorithm performance, yielding a test statistic of 55.49 and a p-value of 1.07e-

05. Figure 4.8 visualizes the rankings, with spiral-based algorithms generally

outperforming the standard LCA.

4.2 Provincial Result Summary

This study evaluated multiple metaheuristic algorithms for wildfire prediction across

various Canadian provinces, highlighting their strengths and limitations in different

regional contexts. By focusing on Recall as the primary metric, we prioritized

minimizing false negatives to identify high-risk wildfire cases accurately. The results

demonstrated that algorithms such as the Energy Valley Optimizer (EVO),
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Figure 4.8: Visualization of average recall rankings among algorithms in Yukon

(Friedman Test results). Lower ranks indicate better performance, with spiral-

enhanced algorithms demonstrating significant improvements.

Genetic Algorithm (GA), and Golden Ratio Method (GRM) consistently

outperformed others in most provinces, showcasing their robustness and adaptability

to diverse environmental conditions. Conversely, standard algorithms like theAtom

Search Optimization (ASO) and Whale Optimization Algorithm (WOA)

consistently struggled to adapt to the complexities of wildfire prediction, resulting

in lower recall scores across provinces. Similarly, Logistic Regression was the

weakest predictive model overall, consistently delivering suboptimal recall values.

On the other hand, Random Forest emerged as the most reliable model for Recall

across top-ranking algorithms, particularly when combined with advanced feature

selection techniques.

Wilcoxon Signed-Rank Test To evaluate the effectiveness of various spiral-

based algorithms relative to the Liver Cancer Algorithm (LCA), we performed
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Wilcoxon signed-rank tests. This non-parametric test was employed to compare

matched-pairs of algorithm performance scores, aiming to determine if there are

statistically significant differences between the LCA and each of the compared

algorithms.

The heatmap displayed below summarizes the Wilcoxon statistic values and

their corresponding p-values for each spiral algorithm comparison:

Figure 4.9: Wilcoxon Signed-Rank Test Results vs. LCA

• Wilcoxon Statistic: This value is indicative of the magnitude of differences

between the matched pairs. A higher statistic suggests a greater disparity in

performance ranks between LCA and the compared algorithm.

• P-value: This metric assesses the statistical significance of the observed

differences. A p-value less than 0.05 typically indicates that the differences
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are statistically significant, leading us to reject the null hypothesis of no

difference.

Key Findings

• The Archimedean Spiral showed significant differences from the LCA, with

a p-value of 0.001, indicating a substantial improvement over the LCA.

• Conversely, algorithms like the Fermat Spiral and Logarithmic Spiral

displayed higher p-values (0.563 and 0.397 respectively), suggesting that

the performance differences from the LCA are not statistically significant.

• The Euler Spiral exhibited a borderline p-value of 0.057, pointing to a

potential significant difference, but still requires further investigation or a

larger sample size to confirm this finding.

4.2.1 Key Insights Across Provinces

Top-Performing Algorithms:

• The Energy Valley Optimizer (EVO), Genetic Algorithm (GA),

and Particle Swarm Optimization (PSO) were among the most robust

algorithms across multiple provinces. For example, in Saskatchewan, the

Genetic Algorithm and PSO achieved average ranks of 2.8, showcasing

their effectiveness in wildfire prediction tasks.

• Spiral-enhanced methods such as the Euler Spiral and Archimedean

Spiral were consistently ranked as superior by both Friedman and Wilcoxon
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tests when compared to the standard Liver Cancer Algorithm (LCA).

These methods demonstrated particularly strong performance in regions like

Alberta and Yukon, achieving high recall scores in models like Random

Forest and Gradient Boosting.

Algorithm Variability Across Provinces:

• Regional factors significantly influenced algorithm performance. While the

Whale Optimization Algorithm (WOA) performed moderately well in

Alberta, it ranked lower in provinces like Ontario and Quebec, indicating its

sensitivity to regional wildfire patterns.

• Similarly, the Golden Ratio Method (GRM) excelled in provinces like

Yukon but struggled in Manitoba and Northwest Territories, highlighting the

need for adaptable optimization strategies.

• There might be a link between location and algorithm performance as all

locations share the same variables. The differences in the best algorithm

performance in each location suggest that regional characteristics and data

distributions can significantly impact outcomes, pointing towards the need

for location-specific tuning of algorithms.

Importance of Feature Selection: Feature selection played a critical role in

enhancing predictive accuracy across all regions. Table 4.16 presents the ten most

frequently selected features, reflecting their importance in wildfire prediction tasks.

Notably, Cluster Density Risk Score, Fire Radiative Power, and Tempera-

ture at 2 Meters Celsius emerged as universally significant, emphasizing their

relevance across diverse wildfire conditions.
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Table 4.16: Top 10 Most Selected Features by All Algorithms

Rank Feature Name Selection Frequency

1 Cluster Density Risk Score (Feature 11) 95%

2 Fire Radiative Power (Feature 0) 90%

3 Temperature at 2 Meters Celsius (Feature 29) 85%

4 Total Cloud Cover (Feature 6) 82%

5 Temperature-Wind Interaction (Feature 43) 80%

6 Week (Temporal Feature) (Feature 17) 78%

7 High Vegetation Fire Risk Score (Feature 21) 75%

8 Combined High Vegetation (Feature 20) 72%

9 Leaf Area Index for High Vegetation (Feature 9) 70%

10 Surface Pressure (Feature 8) 68%
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Chapter 5

Conclusion

This study has significantly contributed to wildfire prediction by integrating ad-

vanced metaheuristic feature selection techniques, refining the Liver Cancer Algo-

rithm (LCA) with spiral updates, and identifying critical environmental predictors

of wildfire risk across Canadian provinces. Through innovative methodology and

rigorous analysis, we have addressed essential challenges of wildfire modelling and

provided insights that can inform research and practical applications.

5.1 Key Advancements

One of the primary advancements of this study is the use of metaheuristic algorithms

for feature selection. These algorithms reduce the dimensionality of complex

datasets, allowing predictive models to focus on the most influential variables. By

doing so, we have enhanced the accuracy of wildfire predictions across diverse

provincial contexts. The importance of feature selection in wildfire modelling has
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been well-documented in the existing literature. For instance, Dong et al. (2022)

highlighted the critical role of spatiotemporal factors, such as temperature and

vegetation indices, in determining wildfire occurrence Dong et al. [2022]. Similarly,

Wang et al. (2021) emphasized the interplay of local meteorology and land-surface

characteristics in shaping wildfire dynamics Wang et al. [2021]. Our findings align

closely with these studies, demonstrating the effectiveness of feature selection in

capturing the complex interdependencies that drive wildfire behaviour.

The refinement of the LCA through spiral updates represents another critical

contribution. Traditional optimization algorithms often struggle to balance explo-

ration and exploitation within the search space, leading to suboptimal solutions.

By incorporating spiral dynamics, particularly the Euler Spiral, we have introduced

a more efficient mechanism for navigating the solution space. This innovation has

improved the LCA’s convergence rate and enhanced its stability and precision in

feature selection. While regional differences in wildfire predictors were expected

due to environmental variability, a notable finding was the consistent selection

of critical features across provinces, observed in spiral-enhanced and standard

algorithms. This underscores the robustness of the identified features and their

universal relevance in wildfire modelling.

5.2 Environmental Variability

A key observation of this study was that despite regional differences in wildfire

characteristics, the spiral-enhanced and standard algorithms consistently identified

similar influential features across provinces. This finding suggests that certain

environmental factors, such as temperature, vegetation density, and fire radiative

power, play a universal role in wildfire dynamics. For instance, the consistent
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selection of Cluster Density Risk Score across provinces indicates that spatial

clustering patterns are critical to understanding wildfire behaviour, regardless of

regional variability. These results highlight the adaptability of the algorithms

and reinforce the robustness of the identified predictors in diverse environmental

contexts.

5.3 Computational Constraints

While this study demonstrated the effectiveness of metaheuristic algorithms, com-

putational efficiency remains a challenge. The large datasets used in this research

required substantial computational resources, particularly for implementing cross-

validation and running multiple algorithm iterations. These constraints limited

the scalability of the approach, especially for real-time applications where rapid

predictions are essential. Addressing these challenges is vital for operationalizing

the methods proposed in this study. Optimizing the computational framework

or employing distributed processing systems could enhance the scalability and

efficiency of these algorithms.

5.4 Future Work

The findings of this study underscore the importance of not only pinpointing the

occurrence of wildfires but also recognizing conditions that denote high risk yet

do not culminate in fire events. This insight directs us toward multiple fruitful

avenues for future research:

1. Inclusion of Non-Event High-Risk Days: Future datasets could incorpo-
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rate days characterized as high-risk based on environmental and topographical

data but where no wildfires occurred. Analyzing these instances will aid in

distinguishing false positives and refining the conditions under which wildfires

are predicted, thereby enhancing the model’s discriminatory power between

actual and potential fire scenarios.

2. Development of Ensemble and Hybrid Methods: Extending the ca-

pabilities of ensemble methods that amalgamate the strengths of multiple

metaheuristic algorithms, future studies could also explore hybrid models

that integrate these techniques with data from non-event high-risk days. Ap-

proaches such as combining spiral dynamics with other optimization strategies

like genetic algorithms or swarm intelligence could further the efficacy and

reliability of wildfire prediction models.

3. Region-Specific Algorithm Tuning: The observed variability in algorithm

performance across different locations indicates a significant impact of regional

characteristics on wildfire predictions. Future research could concentrate on

customizing algorithms to specific locales by adapting algorithm parameters

or integrating regional data traits, including those from high-risk non-event

days. This tailored approach aims to refine the predictive accuracy and

robustness of models designed for distinct geographic areas.

4. Investigating Preventive Measures: By incorporating data from days

deemed high-risk but without wildfire occurrences, future research can also

evaluate the impact of existing wildfire prevention and mitigation strategies.

Insights into what effectively prevents wildfires on these high-risk days could

inform more precise preventive measures and resource allocation strategies.

Pursuing these research avenues could significantly advance the precision, relia-
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bility, and contextual suitability of wildfire prediction models, thereby contributing

to enhanced strategic planning and risk management in wildfire-prone regions.

5.5 Closing Remarks

This study represents a meaningful step forward in the field of wildfire prediction. By

integrating advanced feature selection techniques, refining optimization algorithms,

and identifying critical environmental predictors, we have provided a comprehensive

framework for understanding and managing wildfire risks. These contributions

advance scientific knowledge and have practical implications for mitigating the

devastating impacts of wildfires on ecosystems, economies, and communities. As

climate change exacerbates wildfire activity, the need for accurate and reliable

prediction models has never been more urgent. This study serves as a foundation

for future research and innovation, paving the way for more effective wildfire

management strategies in the years to come.
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